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1 Introduction

1.1 Alignments, inferences, and uncertainty

Molecular sequence data has become an invaluable source of information for understanding evolutionary
processes and for inferring evolutionary relationships between organisms. Molecular sequences provide a
large number of separate characters (individual nucleotides, amino acids, or codons) that are easy to identify
and distinguish. In addition, probabilistic models of how these molecular characters change over time allow
us to estimate evolutionary process parameters and to quantify the evidence for evolutionary hypotheses.
These parameters include phylogenetic trees, divergence times, insertion and deletion rates, and substitution
rates. Probabilistic models of evolution also enable researchers to locate sequence motifs that are especially
conserved or exhibit positive selection. These bioinformatic inferences depend not only on the observed
molecular characters but also on the homology structure of the molecular characters, termed the “alignment”
of the molecular sequences. This homology is not directly observed and can be difficult to assess, especially
when the sequences have diverged for a long time so that sequence similarity is low. As a result, in many
analyses there is substantial uncertainty about the alignment. In this chapter we examine methods for
making robust inferences when the alignment is uncertain.



Traditional bioinformatic inference methods have usually assumed that the alignment was known with
certainty. Ignoring alignment uncertainty when it is present can undermine bioinformatic inferences in several
ways. For example, the use of only one plausible alignment estimate among many can lead to severely
biased estimates of the phylogenetic tree (Lake, 1991) and other parameters (Thorne and Kishino, 1992),
as well as unreliable or non-repeatable results (Morrison and Ellis, 1997). Furthermore, ignoring alignment
uncertainty can lead to exaggerated measures of confidence in those results. Therefore, it is important for
bioinformatic inferences to take alignment uncertainty into account. The scarcity of methods that are robust
to uncertainty in multiple sequence alignments has been a significant obstacle to inferences based on highly
divergent molecular sequences, and thus to answering questions about ancient divergences in the Tree of
Life.

A number of bioinformatic techniques have been developed to avoid the bias and exaggerated confidence
that typically result from conditioning on a single alignment estimate. This is a difficult and multifaceted
problem, and an ideal technique faces many challenges. First, methods should characterize alignment un-
certainty in a rigorous and objective fashion. This involves taking all sources of uncertainty into account, as
well as avoiding subjective and non-reproducible judgments of homology. Second, it is beneficial to report
fine gradations of uncertainty that indicate the weight of evidence for homology, instead of dividing the
alignment into “ambiguous” and “unambiguous” regions. Third, an ideal method would make full use of the
information in the data set, including information in ambiguous regions.

Although such techniques for handling alignment uncertainty have been developed for pairwise align-
ments, methods for handling uncertainty in multiple alignments have been slower to develop. Recent im-
provements in statistical methodology have made it feasible to rigorously assess the degree of uncertainty in
multiple sequence alignments, to represent finer gradations of uncertainty, and to make use of information
in ambiguously aligned regions without bias. In this chapter we will discuss several traditional methods
of handling ambiguity in multiple sequence alignments, as well as new statistical approaches to this prob-
lem. We then illustrate how alignment uncertainty can affect phylogeny estimation by focusing on a small
data example. This example demonstrates the negative effects of ignoring alignment uncertainty and also
illustrates the practical benefits of the new statistical methods.

1.2 Multiple sequence alignments represent evolutionary history
1.2.1 Homology-based alignments versus function-based alignments

In this chapter we follow common practice in the field of molecular evolution in using alignments of molecular
sequences to specify evolutionary homology. That is, multiple sequence alignments specify the homology of
individual residues in a set of homologous sequences by arranging the residues in a matrix so that residues
in a column (also called a “site”) all descend from a single residue in the common ancestral sequence. Thus,
the complete evolutionary history of individual residues in a set of homologous sequences is given by the
combination of a multiple sequence alignment and a phylogenetic tree. However, we note that specifying
homology by use of a matrix in which each row represents one sequence does not allow one to easily represent
homologies within a single sequence. Thus, it is difficult to represent the within-sequence homology that
occurs as a product of gene-internal duplications.

Researchers in other fields have sometimes conceived of alignment in different ways. For example, they
might align residues that do not share a common ancestor, but that perform a common function or occupy
similar positions in the three-dimensional structure of a protein (Mizuguchi et al., 1998; Thompson et al.,
1999). While both kinds of information are useful, we note that functional and structural interpretations of
alignments may not be well-defined, since residues may have multiple functions, and multiple residues may
share one function. If a column corresponds to a function, then it could be necessary to place two adjacent
residues from the same sequence in a single column, or to place a single residue in several columns. In this
chapter, we therefore use alignments only to represent evolutionary homology.

1.2.2 Commonly observed violations of homology in alignment estimates

These different interpretations of multiple sequence alignments can lead to different alignment matrices in
practice. For example, it sometimes occurs that two sequences in a multiple sequence alignment experience
independent insertions in the same location. These two insertions are not homologous because they do not



descend from any sequence in their common ancestor. Thus, under the evolutionary homology interpretation,
these insertions must not be aligned in the same columns, even though they may share similar functions.
Similarly, it may happen that a residue in an ancestral sequence is deleted, and that one of its descendant
sequences later experiences an insertion in the same location. Because the deleted residue is not ancestral to
the inserted residue, these residues must not be aligned even though they may occupy similar positions in the
protein’s three-dimensional structure. These constraints, when observed, rule out many of the alignments
that are commonly created by multiple sequence alignment programs today. However, without knowledge of
the evolutionary tree relating the sequences and of the presence or absence of residues at ancestral sequences,
it is difficult to determine conclusively if an alignment violates these constraints.

1.3 What is alignment ambiguity?

Before we discuss sources of alignment ambiguity and methods of handling this ambiguity, we first seek to
clarify the meaning of alignment ambiguity. We begin by defining alignment ambiguity to mean that there
are two or more plausible alternative alignments. We claim that this definition of ambiguity is the correct one,
and we note that it also applies to the estimation of other parameters, such as phylogenetic trees. However,
it is common to think of alignment ambiguity simply in terms of the degree of sequence conservation in
multiple sequence alignments. This conception of alignment ambiguity may be implicitly used in identifying
ambiguous regions by visual inspection, and is also explicitly used in some computerized procedures that
exclude alignment regions based on the presence of gaps or of sequence variation between taxa. Although
non-conserved regions are often a good indicator of alignment ambiguity, such indicators are successful only
to the extent that they actually indicate the presence of plausible alternative alignments. Another class
of methods seeks to characterize ambiguity in multiple sequence alignments by assessing the sensitivity of
inferred alignments to perturbation in alignment parameters. Again, these methods are successful only to
the extent that they indicate the presence of two or more plausible alternatives. Finally, we note that
in considering alignment uncertainty, we are not addressing uncertainty about whether or not biological
sequences are homologous. Instead, we are concerned with uncertainty about the homology of individual
residues, but take as given that all sequences in a data set are homologous.

Second, homologies in an alignment are not simply “ambiguous” or “unambiguous”; but can be of varying
degrees of certainty, depending on the strength of evidence in the observed data for the homology'. Many
methods have been developed to improve phylogenetic inferences by discarding portions of the aligned data
matrix and keeping the rest, and it may be natural to speak of the discarded portions as “ambiguous regions”.
However, it is important to note that this does not mean that the resulting portions are “unambiguous”,
because complete certainty about homology is not possible.

Third, it is useful to consider alignment ambiguity for parts of the alignment as well as the whole. When
considering partial alignments, it is important to define them in a coherent fashion. For example, it is natural
to talk about ambiguous “regions” in an alignment, but this is problematic since the regions are defined by
the alignment itself, which is not known with certainty. Indeed, if a “region” is ambiguous, then it may not
exist. To avoid this problem, we define a partial alignment as a hypothesis about homology and note that the
smallest possible hypothesis of homology is that two residues from different sequences are homologous or not
homologous. Most homology hypotheses, including the hypothesis of a full alignment, can be decomposed
into a collection of minimal homology hypotheses of this type. Now that we have more carefully defined what
we mean by a partial alignment, we can extend the definition of alignment ambiguity to partial alignments.
We note that many full alignments may conform to any partial alignment; for example, many full alignments
satisfy the criterion that residue 1 of sequence 1 is homologous to residue 1 of sequence 2. With this in mind,
we state that alignment ambiguity for partial alignments means that some plausible full alignments conform
to the partial alignment and that some do not.

Fourth, plausibility is a relative term that always depends on the the degree of knowledge of the researcher.
Thus, the degree of ambiguity in the alignment depends on what is known, so that it is not meaningful to
simply speak of an alignment region as “ambiguous” without first specifying what facts about evolutionary
parameters should be taken as given. For example, it may be the case that two alternative phylogenies

1The flip side of ambiguity is the strength of evidence. Ambiguity applies to a variable (e.g. the alignment) that has more
than one plausible value. Strength of evidence applies not to a variable, but to a hypothesis, such as the hypothesis that the
variable takes on a specific value.



support alternative alignment estimates. In this case, if the phylogeny is unknown, the alignment must be
considered ambiguous, but if one of the phylogenies is known to be correct, then the alignment may be
well supported. Similarly, different values of other alignment parameters such as the indel and substitution
rates may lead to different estimates of the alignment. In some cases, precise knowledge of parameter values
may result in substantially less uncertainty in the alignment. The general idea that knowledge of parameter
values affects the degree of alignment ambiguity can be conveniently expressed in terms of conditional
probabilities. For example, if A and 7 refer to the unknown true alignment and tree while Ay and 7y are
specific possibilities for the alignment and tree, then the probability P(A = Aj) that the alignment is Ay
when the tree is unknown may differ substantially from the probability P(A = Ag|r = 7¢) that the alignment
is Ay when the tree is known to be 7.

The interaction of alignment ambiguity with bioinformatic inferences is most important when alignment
estimates are largely determined by initial assumptions about parameter values. In this case, alignment
estimates will reflect and reinforce assumptions embodied in tunable parameter values such as the “guide
tree” that is used to guide alignment construction in progressive alignment. In such cases, the alignment
must be considered dangerously ambiguous, because the ambiguity may undermine the inference procedure.
This observation may be clarified by noting that, when inferring an evolutionary parameter such as the tree
or the insertion-deletion rate, it must not be treated as known during the inference?. For example, if we seek
to infer the evolutionary tree topology, then we must not assume knowledge of a particular evolutionary tree
during the estimation of the alignment. Nevertheless, this is exactly what is done when a guide tree is used.
Likewise, when attempting to infer indel rates from an alignment, we must assume that there is a range of
uncertainty about (at least) the gap-opening cost, because this corresponds to the indel rate.

1.4 Inferences from multiple sequence alignments

Multiple sequence alignments are a prerequisite for inferring a number of different biological properties.
Therefore alignment ambiguity must be considered in each of these methods. Most of the properties inferred
from molecular sequence alignments may be considered evolutionary parameters in that they specify the
process of molecular sequence change or the historical relationships of the sequences.

First, modern methods for estimating phylogenetic trees relating molecular sequences require a multiple
sequence alignment as input. By specifying which residues are homologous, multiple sequence alignments di-
vide the set of sequences into a set of separate single-residue characters. This decomposition is a requirement
for the most powerful and accurate modern phylogeny estimation methods, which infer clades based on the
evidence of shared, derived characters. In this chapter, our central focus is on the estimation of phylogenetic
trees, but we briefly consider implications of alignment uncertainty for other methods as well.

Second, alignments are necessary for the estimation of mutation rates, divergence times and evolutionary
distances. This includes the estimation of the rates of insertion and deletion, as well as substitution rates
and other other parameters of the evolutionary process.

Third, alignments are required in many methods for labeling sites as functionally divergent, conserved,
positively selected, or hyper-variable. This is because the alignment defines the sites which are given func-
tional labels, and so alignment uncertainty means uncertainty about what the sites are. In addition, most
methods for annotating sites use the pattern of different character values at each site to assign meaningful
labels. Thus, alignments are also required for motif-discovery methods if those methods rely on conservation
patterns to find motifs.

Lastly, we note that alignments are also used to infer whether or not two sequences are homologous.
However, we do not focus on this kind of analysis in this chapter, because questions about the existence of
sequence homology are not about which alignment is correct, but about whether any alignment is correct.
Furthermore, determinations of homology are often based on the distribution of various statistics under
the null model of non-homology, whereas we are interested in alignment ambiguity under the assumption
of homology. However, we note that improved methods that explicitly consider the alternative model of
homology as well may improve the ability to detect homologs with very high sequence divergence (Csuros
and Miklos, 2005).

2This observation has practical consequences for sensitivity analysis, which attempts to gauge alignment ambiguity by using
a range of parameter values for uncertain parameters. Despite the fact that the topology is unknown, it seems uncommon for
researchers to include a range of values for the guide tree when progressive alignment is used.



2 The structure of bioinformatic inferences

In order to characterize the quality of bioinformatic inference methods, we first describe the properties that
we desire in a robust inference method. We then discuss the multi-stage pipeline structure that is common
to many traditional estimation methods and discuss how estimation errors may propagate through this
pipeline. We then overview two different approaches to bioinformatic inferences, the cost-based paradigm
and the statistical paradigm. Finally, we detail the two primary sources of alignment uncertainty and
compare the two paradigms in terms of their ability to make robust inferences in the presence of alignment
uncertainty.

2.1 Robust inference

Inference methods must have a number of important properties in order to provide a sufficient basis for
robust decisions. First, inference methods must avoid bias. Specifically, while inference methods do not
always yield correct results because of insufficient information, we desire that results tend towards to the
correct answer as the amount of information increases, and not towards any other value. Second, we desire
an inference method to use make the efficient use of all information in the data set, decreasing the range of
error and increasing power to detect things. Third, in order to be a useful basis for decisions, an inference
method should provide accurate measures of confidence or precision that indicate the weight of evidence in
favor of the inference or estimate. For example, if a researcher wishes to use molecular data to determine
whether a clade is monophyletic, a tree estimate is of little value unless it is accompanied by the weight of
evidence for clade monophyly. Bias and uncertainty in the alignment estimate naturally propagate to bias
and uncertainty in estimates of trees, evolutionary rates, and other parameters, because these estimates are
based on the alignment estimate. However, the way in which this happens depends on the way the inference
is structured.

2.2 Sequential estimation
2.2.1 The structure of sequential estimation

Bioinformatic inference methods often consist of a series of chained estimation steps that are performed
in a particular order. Instead of estimating the parameter of interest directly from unaligned sequence
data, such “sequential estimation” methods are characterized by a pipeline structure in which the output of
each estimation step may be used as input to the following step. For example, phylogenies are traditionally
estimated in a two-step process. In the first step, a multiple sequence alignment is constructed from unaligned
sequence data. This alignment is often manually edited or trimmed to remove estimation artifacts. Then,
in the second step, this alignment estimate is used to construct a phylogeny estimate. Estimation of other
evolutionary parameters may follow the same pattern. For example, a researcher might first construct a
single alignment estimate, and then use that alignment to estimate branch lengths and the relative rates of
indels and substitutions (Thorne et al., 1991). In both cases the error in inaccurate alignment estimates may
propagate through the estimation pipeline and affect downstream estimates, including finally the parameter
of interest.

In addition to unaligned sequence data that is used as input, the output of the estimation pipeline is
influenced by several tunable parameters that must be specified by the researcher. For example, an alignment
estimate may be influenced by the value of tunable alignment parameters such as the gap opening penalty,
the gap extension penalty, and various mismatch penalties. When the alignment estimate is constructed
by progressive alignment, these parameters additionally include a guide tree that determines the order in
which pairs of partial multiple sequence alignments are combined to produce the full multiple sequence
alignment estimate. Thus, alignment estimates may be influenced by the guide tree as well as by mutation
costs. Although the guide tree may be specified by the researcher, it is frequently estimated from the un-
aligned sequence data using distance-based techniques such as neighbor joining (NJ). In this case, phylogeny
estimation becomes a 3-step procedure in which the first step involves estimating the guide tree.



2.2.2 Sources of error in sequential estimation

Sequential estimation works well when the sequences are closely related and there is little ambiguity about
the true alignment. However, when the sequences are more divergent, two sources of uncertainty may lead
to uncertainty in the alignment estimate. First, there may be a myriad of near-optimal alignments. In this
case, the best-scoring alignment cannot be confidently preferred over the second best alignment, because
both alignments have similar quality. In this case, the choice of a single alignment estimate to submit to the
next stage is somewhat arbitrary, and may result in an error that propagates through the estimation pipeline.
We note that the degree of uncertainty here does not depend solely on prior beliefs about the alignment, but
instead depends on the strength of evidence in the observed unaligned sequence data for each alignment as
assessed by a probabilistic model or objective function. Therefore, this uncertainty can be categorized as a
posteriort uncertainty.

Second, when the input sequences are divergent, uncertainty about tunable parameter values may also
lead to error. This is because small changes in the values of tunable parameters may result in a different esti-
mate. For example, different gap penalties in the alignment stage may lead to different alignment estimates,
which in turn lead to substantially different phylogeny estimates (Morrison and Ellis, 1997). Thus, when the
true value of these parameters is unknown or not precisely known, uncertainty in the parameters leads to
uncertainty in downstream estimates that depend on the alignment estimate. In the sequential estimation
paradigm, tunable parameter values are initially chosen based on prior knowledge or belief, instead of being
estimated from the observed data that is used as input. Therefore this uncertainty can be categorized as a
priori uncertainty.

2.2.3 Circular dependencies in sequential estimation

Sequential estimation can lead to biased inferences because accurate knowledge of tunable parameters for the
alignment estimation process is not available during the alignment construction step. To demonstrate this,
we note that tunable parameters of the alignment construction process in fact correspond to the parameters
of the evolutionary process. For example, progressive alignment algorithms require phylogenetic information
in the form of a guide tree in order to yield high-quality alignment estimates (Thompson et al., 1994).
Likewise, the gap-opening penalty is a proxy for the indel rate, the gap-extension penalty corresponds to the
mean indel length, and mismatch penalties depend on the percent identity of the sequences. Therefore, the
phylogeny, indel rate, and branch lengths should be known in advance before the alignment is estimated.
This observation makes intuitive sense, in that knowledge of the evolutionary process should lead to better
estimates of the alignment. However, it leads to problematic circular dependencies. For example, traditional
approaches to phylogeny estimation require the alignment to be known in advance before the phylogeny
can be estimated. However, high-quality estimates of the alignment require the phylogeny to be known in
advance before the alignment can be estimated. Clearly, both of these conditions cannot be satisfied: in a
sequential estimation framework either the phylogeny or the alignment must be estimated first.

Circular dependencies lead to biased estimates when the alignment is ambiguous because alignment
estimates may simply reflect and artificially reinforce the initial guesses for tunable parameters in this case.
For example, alignments constructed by progressive alignment tend to support phylogenies that are similar to
the guide tree, which is a tunable parameter (Lake, 1991; Thorne and Kishino, 1992). Likewise, the number
of indels in an alignment estimate may be largely determined by the gap-opening penalty, so that estimates
of indel rates strongly depend on that parameter. One possible way to handle circular dependencies is to
alternate between estimating the alignment and the parameter of interest. However, the tendency of the
alignment estimates to reinforce bad initial guesses when the alignment is ambiguous can lead to mutually
reinforcing, but incorrect, estimates for the alignment and other parameters. In such a case, iteration will
not step away from local optima to achieve global convergence.

2.3 Joint estimation

Bioinformatic inference methods may avoid the bias and overconfidence introduced in sequential estimation
by estimating mutually dependent parameters simultaneously. This “joint estimation” approach has two
primary attractions. First, it eliminates the circular dependencies that plague the sequential estimation
paradigm. This is done by means of a joint score function for all mutually dependent parameters, including



the alignment, phylogeny, indel rates, substitution rates, and other parameters. For example, if the alignment
A and phylogeny 7 are jointly estimated, then a joint score function of the form f(A, ) is necessary. Because
an alignment is always available when scoring the tree, a previous alignment estimation step is unnecessary.
Likewise, because a phylogeny is always available when scoring the alignment, a separate guide tree is
unnecessary. We note that this score function may be either a cost function as in Wheeler (1996) or a
probability function based on a joint probabilistic model as in Redelings and Suchard (2005).

Second, joint estimation allows all possible alignments to be considered when scoring each evolutionary
parameter. For example, Thorne et al. (1991) estimates indel rates by maximum likelihood in a way that
is not dependent on the choice of a single alignment. This involves computing the likelihood of parameters
by summing the probability of all alignments conditional on those parameter values. Similarly, a joint score
function can be used to estimate phylogenies in a way that considers all alignments. We also note that when
the alignment is the parameter of interest, all possible values of other parameters may be considered.

2.3.1 Types of joint estimation

There are a number of different ways that a joint score function can be used (Wheeler, 2006), and we return
to our previous example in which the alignment A and topology 7 are to be estimated to illustrate this point.

First, the researcher may estimate the optimal parameter combination by finding the parameter values
that optimize the joint score function. Wheeler (1996) defined a cost-based score function and followed this
optimization approach to estimate phylogenies and alignments. Thus the estimates 7 and A are constructed
such that

(7,A) = argmin f(r, A),

where the mathematical notation argmin, o denotes the value of the arguments (7, A) at which the func-
tion f(7,A) takes its minimum. Non-optimal parameter combinations make no contribution to parameter
estimates in this approach. We also note that each topology 7 can be compared to other topologies based
on a reduced score function f(7) in which the alignment argument A is optimized out:

fir) = minfir.a)
= f(TvargH}inf(TvA))

Thus, each topology is scored using a different alignment that is optimally adapted to it. In contrast, the
sequential estimation approach compares topologies based on a score function fa,(7), where the alignment
Ao was computed in a previous step and remains the same for all topologies instead of being adapted to
each topology.

Second, the researcher might construct the maximum likelihood estimate of 7. Here the joint score
function f(7,A) is the probability Pr(Y,Al|r) of the data Y and alignment A given topology 7. The
reduced score function f(7) = Pr(Y|r) that is used to compare topologies is constructed by summing over
the alignments instead of maximizing or minimizing over them:

f(r)=Pr(Y|r) = ) Pr(Y,Alr)
A
= Zf(T,A).
A

This process of summing over all possible values of a variable is known as marginalization. Marginalization
leads to less biased estimates than simple maximization because it does not score a topology 7 only against
the alignment that are optimally adapted to it, but also considers near-optimal alignments. This makes
allowances for the fact that, conditional on a topology 7 being correct, the optimal alignment for 7 may
still not be the correct alignment. For example, Thorne et al. (1991) showed that alignments must be



summed out in order to give unbiased estimates of indel rates and evolutionary distances when the alignment
is ambiguous. We note that in the maximum likelihood paradigm the phylogeny, indel rates, and other
evolutionary parameters are not summed out, because they are parameters and not missing data like the
alignment.

Lastly, the researcher might use a Bayesian approach to estimate 7. In this case the joint score function
f(r,A) is the posterior probability Pr(r, A[Y). As in the maximum likelihood case, estimation of the
topology is made by marginalizing over the alignment:

f(r)=Pr(r]Y) = ) Pr(r,AlY)

A
= Zf(r, A).
A

However, unlike the maximum likelihood case, inference on the alignment can be made in the same way by
summing out the topology. This is made possible in the Bayesian paradigm by placing a prior distribution
over the topology and other parameters in order to treat them as random variables. Thus, inferences about
the alignment may take into account uncertainty in the topology and other parameters.

2.3.2 Joint estimation and bootstrap fractions

One of the most common ways of characterizing the strength of evidence for a phylogenetic hypothesis is the
bootstrap fraction. We note that the bootstrap fraction should not be interpreted as a probability that a
clade is correct. For example, a bootstrap fraction of greater than 0.7 is often considered to represent strong
support. Nevertheless, the bootstrap approach is attractive because it can assess how sensitive conclusions
are to data selection even when an estimator does not provide this information itself.

However, the bootstrap fraction cannot be used to characterize uncertainty of phylogenetic hypotheses
when the alignment is co-estimated with the phylogeny. This follows from the fact that the bootstrap
approach assumes that the data can be decomposed into a series of separate columns or sites that can be
resampled in the bootstrap procedure. However, when the alignment is unknown, the sites are no longer
defined, and so the bootstrap fraction cannot be computed as usual.

2.3.3 Joint Bayesian estimation

Joint Bayesian estimation is our preferred method of analysis for bioinformatic inferences. One benefit of the
Bayesian approach and the maximum likelihood approach is that all mutually dependent parameters may
be jointly estimated. In contrast, score-based approaches such as Wheeler (1996) are able to co-estimate
the alignment and phylogeny but allow indel and substitution costs to remain as tunable parameters. Thus,
circular dependencies still exist between the alignment and these costs. Another benefit of the Bayesian
and maximum likelihood approaches is that alignments may be summed out, which is necessary to avoid
bias. As noted by Wheeler (2006), optimization based approaches may optimize either a cost-based score
function or a probability expression. In the second case, a statistical model of the insertion-deletion process
is necessary, but unobserved internal sequences may be maximized over instead of averaged over (Wheeler,
2006). In other approaches, the letters of the internal sequences may be averaged over, but their homology
may be maximized over (Fleissner et al., 2005). Both approaches lead to less accurate estimates that may
be biased, but can improve computational efficiency. Finally, we recall that Bayesian approaches are able
to incorporate parameter uncertainty into posterior distributions of latent variables such as the alignment,
while it is not clear how to do this in the maximum likelihood framework.

Joint Bayesian estimation of pairwise alignments and evolutionary process parameters is not a new de-
velopment (Allison and Wallace, 1994). However, it is only recently that statistical techniques for estimating
multiple sequence alignments have been developed (Holmes and Bruno, 2001; Holmes, 2003), leading to
joint Bayesian estimation of alignments and phylogenies (Lunter et al., 2005; Redelings and Suchard, 2005;
Fleissner et al., 2005). Because many bioinformatic analyses require multiple sequence alignments, these
new techniques have created new opportunities for robust statistical inference in the presence of alignment
uncertainty. However, for the moment, the extreme amounts of computation time required for these analyses
limits the size of data sets that they can be applied to.



2.4 Cost-based methods versus statistical estimation
2.4.1 Estimation in the cost-based paradigm

Both pairwise and multiple sequence alignments have traditionally been estimated by finding the alignment
that optimizes some score function. In the cost-based paradigm, the score function is computed as a sum
of penalties, or “costs”, for each observed sequence change in the alignment. In many pairwise alignment
algorithms each aligned residue pair may incur a mismatch penalty if the residues are different, and each
indel incurs a gap-opening penalty (GOP) as well as (in some algorithms) a separate gap-extension penalty
(GEP) for each additional deleted or inserted character. The maximum parsimony method of inferring
phylogenetic trees is an example of a cost-based method because its score function is the sum of a number
of penalty terms for observed sequence differences. In addition, some early (Sankoff et al., 1973; Sankoff,
1973; Sankoff et al., 1976) and some later (Wheeler, 1996, 2006) methods for multiple sequence alignment
seek to minimize a score function that explictly accounts for insertions and deletions on internal branches of
the tree by including in the alignment unobserved ancestral sequences at internal nodes on the phylogeny.

However, most newer methods are willing to sacrifice some of this biological realism in order to sub-
stantially increase speed. First, most commonly used methods for multiple sequence alignment rely on an
objective function that does not explicitly consider substitutions or indels occuring on each branch of the
tree. Instead, they might use a less biologically motivated score function, such as a sum-of-pairs score (Edgar,
2004) or a tree-based weighted-sum-of-pairs score (Thompson et al., 1994). Because the sum-of-pairs score
does not depend on the evolutionary tree, it may therefore double-count the cost for shared, derived changes
that are observed in more than one leaf sequence. Second, most of these alignment algorithms rarely succeed
in optimizing their score function, preferring instead to use progressive alignment in order to quickly discover
a relatively high-scoring alignment.

Despite the variation in these methods, they all share a common drawback of the cost-based paradigm:
cost parameters cannot be estimated by minimizing a cost function, since this would simply result in setting
all the costs to zero. This is primarily a problem when attempting to determine gap penalties, since sub-
stitution costs may be determined from data using probabilistic methods, as in the PAM and BLOSSUM
matrices. However, even in this case, cost-based methods to not allow the cost parameters to be tuned to
the data set at hand through optimization of the cost function. Lastly, we note that cost parameters do not
represent a biological property, so it is unclear what it means for a cost parameter value to be called correct
or incorrect.

2.4.2 Estimation in the statistical paradigm

Alignment estimation in the statistical paradigm requires a probabilistic model of insertion and deletion. The
alignment can then be inferred either by maximizing the likelihood (a frequentist approach) or by calculating
the probability distribution of the alignment, given the observed sequence data (a Bayesian approach). If
the frequentist approach is used, then the likelihood becomes a score function, although it is maximized
instead of minimized like cost-based score functions. We note that log probabilities of accepted mutations
are similar in meaning to the penalties for these mutations in the cost-base paradigm. This is because the log
probabilities of independent events are added to compute the total probability, similar to the way penalties
are added in the cost-based paradigm to compute the total penalty.

One benefit of the statistical paradigm is that statistical models of evolution allow the cost parameter
for each type of mutation to be replaced with a biologically interpretable parameter that measures the rate
of accepted mutations. For example, the gap-opening penalty may be replaced by an insertion-deletion
rate, and mismatch penalties may be replaced by substitution rates. One exception to this rule is that the
gap-extension cost is not replaced with a rate, but with an extension probability that controls the mean
length of gaps. This is because each gap extension is not a separate mutation, but simply a penalty for
longer gaps that is separate from the penalty for gap creation. We note that rate parameters play the same
role as penalties or costs - a high rate corresponds to a low cost, and a low rate corresponds to a high cost.
However, modelling evolution in terms of mutation rates more naturally accounts for multiple changes on a
branch of the tree and for the occurrence of more changes on branches of longer duration.

A second benefit of the statistical paradigm is that it is possible to estimate rate parameters from the
data. This differs from cost-based estimation in that increasing the mutation rates (which corresponds
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to decreasing mutation costs) decreases the penalty for a mutation but also increases the penalty for not
mutating. Therefore, the likelihood does not always increase with increasing mutation rates, allowing rates
to be estimated by maximizing the likelihood. Because all parameters in a statistical model can be estimated
from data, it is not necessary to specify the rate parameters based only on prior belief. For example, the
relative rates of transitions and transversions can be estimated from the observed sequence data, as can
the relative rates of indels and substitutions. This yields empirically driven parameter values, instead of
parameter values chosen based on subjective or heuristic choices. Thus, the relative weight of different types
of mutational events can be driven by the data.

2.5 Sources of alignment uncertainty

Alignment uncertainty comes primarily from two sources: uncertainty in parameter values and uncertainty
due to near-optimal alignments. These sources of uncertainty are dealt with quite differently in the cost-based
paradigm and the statistical paradigm. Additionally, there are smaller but important differences between
maximum likelihood estimation and Bayesian estimation within the statistical paradigm.

2.5.1 Alignment ambiguity from parameter uncertainty

Parameter uncertainty leads to alignment ambiguity because different values of tunable alignment parame-
ters lead to different alignment estimates. This is to be expected, since these parameters characterize the
evolutionary process, and therefore determine how plausible each alignment should be. In the cost-based
paradigm, such parameters include a cost for each type of mutation in addition to the guide tree, whereas
in the statistical paradigm cost parameters for each type of mutation are replaced with mutation rates.
Parameter uncertainty is almost always a priori uncertainty in the cost-based paradigm and a posterior: un-
certainty in the statistical paradigm. That is, uncertainty about cost parameters in the cost-based paradigm
is based on prior belief and not on the data. This is because it is not clear how to estimate cost parameters
from the observed data. Therefore, when determining alignment ambiguity via sensitivity analysis, it maybe
difficult to justify any particular range of parameters as being large enough. In the statistical paradigm, on
the other hand, the amount of parameter uncertainty depends primarily on how much data is collected and
how informative it is. Parameters may be estimated via maximum likelihood and parameter uncertainty
may be characterized in terms of confidence intervals. If a Bayesian approach is taken, prior information or
belief may be incorporated into parameter estimates, but this a priori information has decreasing influence
on estimates as the amount of data increases. In contrast, maximum likelihood estimates and confidence
intervals do not incorporate prior information.

2.5.2 Alignment ambiguity from near-optimal alignments

Near-optimal alignments indicate alignment ambiguity because they indicate the presence of plausible al-
ternatives to the optimal alignment. Taking into account near-optimal alignments is difficult to do within
a cost-based framework because differences in cost scores have no intrinsic meaning. The scores can be
multiplied by any positive scaling factor without changing the optimum, and so it is unclear how close an
alignment must be to optimal before it is consider to be “near” the optimum. In addition, if one seeks to
down-weight near-optimal alignments that are further away from the optimum, it is unclear how much a
sub-optimal alignment should be down-weighted. In contrast, when inference is carried out under a prob-
abilistic model it is possible to incorporate alignment uncertainty into a further analysis by weighting each
alignment according to its probability. In addition, it is possible to determine (for example) a 95% probable
set of alignments if a cutoff is needed.

2.5.3 Effects of under-estimating ambiguity

Simultaneously accounting for both parameter uncertainty and near-optimal alignments is an important
feature of any bioinformatic analysis. If one of these sources of uncertainty is ignored then exaggerated
confidence may be ascribed to the resulting estimates. Mathematical readers will appreciate that this is
similar to the common ANOVA formula about the proportion of the variance in X that is explained by Y

Var(X) = Var[E(X|Y)]+ E[Var(X|Y)],
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where the first term is the variance in X that is explained by variation in Y, and the second term is
the variation in X that is not explained by variation in Y. Ignoring either of these contributions to the
uncertainty may lead to under-estimation of the effects of alignment ambiguity, and hence overconfidence in
a bioinformatic inference. However, it is not clear how one can consider both sources of uncertainty when
using cost-based models.

2.5.4 Alignment ambiguity in the frequentist paradigm

While both maximum likelihood and Bayesian methods attempt to simultaneously estimate model parame-
ters ® and alignment A from the data Y, the methods differ substantially in their handling of uncertainty
in the alignment. In the maximum likelihood framework, a common method is to first construct an estimate
©of ® by summing over all possible alignments in proportion to their probability:

©® = argmaxP(Y]|O)
= argmaXZP(Y,A|®).
A

Approximate confidence intervals for ® can then be obtained by assuming the asymptotic normality of )
and estimating the inverse of the Fisher information matrix. These confidence intervals then account for
uncertainty in both the alignment and parameter values because the alignment is summed out. However,
uncertainty in the alignment is usually determined under the assumption that @ = @, by considering

the alignment distribution P(A|Y, @) = %. Unfortunately, confidence intervals obtained from
A P(A,

this distribution ignore uncertainty in the parameter estimates ©, and therefore do not take into account
parameter uncertainty. Thus, in estimating alignments, the common maximum likelihood method accounts
for alignment uncertainty in parameter estimates but does not account for parameter uncertainty in alignment
estimates.

2.5.5 Alignment ambiguity in the Bayesian paradigm

The Bayesian approach to statistical estimation naturally incorporates both sources of uncertainty simulta-
neously. Bayesian inference is based on the joint posterior distribution of the alignment A and parameters
® given the data Y. This distribution represents the posterior uncertainty in both A and ©, as well as
representing the correlation between them. The posterior distribution for A is obtained by integrating over
possible values of ©

P(AlY) = /d@P(A,@|Y).

Thus, credible intervals for A that are based on this posterior alignment distribution take parameter uncer-
tainty into account. As a result, joint Bayesian estimation is an attractive method for estimating alignments
and other parameters because it simultaneously accounts for uncertainty due to near-optimal alignments and
also parameter uncertainty.

3 Alignment uncertainty: pairwise alignments

Before we consider methods of handling alignment ambiguity in multiple sequence alignments, we first sum-
marize the progress made for pairwise alignments. Methods for handling alignment uncertainty in pairwise
alignments preceded methods for handling uncertainty in multiple sequence alignments by a significant time
period. Nevertheless, the development and improvement of methods is parallel, so that many improvements
can be illustrated with pairwise alignments and then extrapolated to multiple sequence alignments.
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3.1 Probabilistic models and pairwise alignment uncertainty
3.1.1 Models of the insertion/deletion process

Probabilistic approaches to pairwise alignment rely on a probabilistic model of the insertion/deletion process
and the substitution process. For example, Bishop and Thompson (1986) specified a probability distribution
on pairwise alignments in terms of the probabilities of gap opening and gap extension. Under such a
model, parameters may be estimated via maximum likelihood without relying on the choice of a single
alignment estimate. Instead, the likelihood for any set of parameter values is computed by using dynamic
programming to sum the probabilities of all pairwise alignments, conditional on the given parameter values.
Given an estimate of the evolutionary process parameters, a probabilistic model makes it possible to measure
confidence for homology of two residues in terms of probabilities, by summing over all alignments that
display the homology and weighting each alignment by its probability given the parameters. However, this
maximum likelihood approach does not take parameter uncertainty into account when considering alignment
uncertainty. A Bayesian approach to estimation allows the incorporation of prior beliefs about parameters
and also incorporates posterior parameter uncertainty into measures of posterior alignment uncertainty
(Allison and Wallace, 1994).

A further advance was the construction of stochastic process models for the insertion-deletion process
(Thorne et al., 1991, TKF1). The TKF1 model specifies not only a distribution on pairwise alignments, but
also describes how insertion and deletion events accumulate along over time to create a pairwise alignment
between ancestor and descendant sequences. For example, previous probabilistic models did not distinguish
between two adjacent deletion events and one long deletion because they model only “gaps” and not the
indel events that create them. Additionally, the TKF1 model replaces the gap probability of the Bishop
and Thompson model with an insertion rate and a deletion rate that are biological meaningful parameters.
However, the TKF1 model has the drawback of assuming that all indels are of unit length. The Thorne
et al. (1992, TKF2) model extends the TKF1 model by allowing indel lengths to follow a geometric distri-
bution. The TKF2 model therefore adds an additional parameter to specify the extension probability of this
distribution.

As noted above, the use of probabilistic models can decrease bias in parameter estimates by performing a
weighted average over all possible alignments instead of considering only the optimal alignment. Especially
for divergent sequences, estimates of the number of substitutions are biased upwards and estimates of the
number of indels are biased downwards when using the optimal alignment (Thorne et al., 1991; Yee and
Allison, 1993). Thus, when there is significant alignment uncertainty, the optimal alignment may not be
typical of the set of plausible alignments. By instead averaging over all pairwise alignments, the bias is much
decreased.

3.1.2 Extrapolation to multiple sequence alignments

Probabilistic models of insertion and deletion allow bioinformatic inferences to take alignment ambiguity
into account by summing over all alignments. However, the number of possible pairwise alignments is
astronomically large, growing faster than exponentially as sequence length increases. Sums over all pairwise
alignments are computationally tractable because of the use of dynamic programming, an approach later
formalized in terms of Hidden Markov Models (HMMs) (Durbin et al., 1998). The amount of computation
time required by dynamic programming algorithms for pairwise alignments grows only as the square of
sequence length for TKF models and the Bishop and Thompson (1986) model. This makes it possible to
analyze sequence lengths of several thousand letters without approximations, and even greater lengths with
approximations are made.

Unfortunately, there are several reasons that dynamic programming algorithms cannot be practically ap-
plied to directly sum over the possible alignments between three or more sequences. Firstly, the computation
time and memory requirements increase as O(L™), where L is the sequence length and n is the number of
sequences. Thus, dynamic programming can be performed for three sequences, provided the sequences are
kept quite short, but it is impractical to extend to more than three sequences. Secondly, computation time
and memory requirements grow exponentially in the number of observed sequences because the number of
states in the HMM increases exponentially. Thus, even if it were a simple matter to describe a dynamic
programming algorithm for aligning many sequences simultaneously, this algorithm would be too compu-
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tationally burdensome to carry out. Therefore, sums over all possible multiple sequence alignments must
be approximate. Using MCMC techniques, these sums can be approximated without visiting every possi-
ble multiple sequence alignment. However, the development of practical techniques for performing MCMC
on multiple sequence alignments was delayed until Holmes and Bruno (2001) introduced new strategies for
sampling alignments on a fixed topology. These new developments were of course assisted by the fact that
the speed of desktop computers has continued to increase.

4 Alignment uncertainty: multiple sequence alignments

In contrast with the advanced statistical methods for dealing with uncertainty in pairwise alignments, com-
mon procedures for dealing with uncertainty in multiple sequence alignments have until recently been much
less developed. Methods to handle uncertainty in multiple sequence alignments must handle many prob-
lems. First, they must be able to detect uncertainty in the alignment. In doing so, they must incorporate
uncertainty from both near-optimal alignments and from parameter uncertainty including the phylogeny.

4.1 Identification of ambiguous regions based on a single alignment

When phylogenies are inferred by sequential estimation, alignment uncertainty is often handled by labeling
some regions of the single alignment estimate as “ambiguous”, leaving the remainder as presumably “un-
ambiguous”. The ambiguous regions are then thrown out, and the remaining alignment columns are then
submitted as input for further analysis. However, identification of ambiguously alignment regions is in itself
a challenging task. The success of this approach therefore depends critically on how well the researcher is
able to identify unambiguous columns in the alignment. If the researcher fails to identify incorrectly aligned
columns, then this failure may bias the rest of the analysis. On the other hand, the removal of correctly
aligned columns decreases the power to distinguish between alternative hypotheses.

Unfortunately, alignment ambiguity is commonly identified by a subjective and ad hoc “visual inspec-
tion”. Subjective determination of alignment ambiguity can lead to conflicting phylogeny estimates when
researchers make different choices about including or excluding alignment regions (Lutzoni et al., 2000).
In addition, subjective determination of alignment ambiguity makes it very difficult to reproduce reported
results. Therefore, a significant challenge has been to identify ambiguous sites in an objective and repeatable
way (Gatesy et al., 1993).

One method for avoiding this subjectivity is to use a computer program to remove all alignment columns
that are near gaps and are not part of conserved blocks according to specified rules (Castresana, 2000,
GBLOCKS). This approach codifies some of the intuition that is commonly used in removing alignment
columns to prepare for phylogenetic analyses. However, this approach does not fully address the problem of
identifying ambiguity and so has a number of drawbacks which make it difficult to apply to highly divergent
sequences. First, the GBLOCKS method relies on a single alignment estimate to locate ambiguously aligned
regions, and so the method is sensitive to the specific placement of gaps in this alignment, which may be
incorrect. Thus, the automatic censoring of alignments created using different methods can retain different
columns (Talavera and Castresana, 2007).

Second, the method attempts to assess ambiguity without any knowledge of evolutionary parameters such
as the frequency of indels or the phylogenetic tree. Because the tree is not known, columns are identified as
“conserved” based on the frequency of the majority character value in the column, instead of the predicted
number of substitutions in the column, which may be small or large. Third, the GBLOCKS method uses
a stringent and conservative test for retaining alignment columns, and so it may lead to the removal of a
large number of phylogenetically informative characters. This results partly from the fact that the method
is completely agnostic about alignment parameters, and bases confidence in alignments on conservation.
Thus, it may throw out blocks that would be unambiguously aligned if the guide tree or indel costs were
known. The removal of phylogenetically informative characters is also partly by design, because the removal
of phylogenetic informative but rapidly changing sites is sometimes considered to be a positive feature when
the phylogenetic inference method does not account for rate heterogeneity between sites. However, if the
phylogenetic inference method can handle rate heterogeneity, then removal of these sites may be significant
drawback.

14



Whether the approach is repeatable or not, the approach of categorizing columns as ambiguous or un-
ambiguous has a few more drawbacks. First, the categorization is binary, but it would be preferable to
have a degree of certainty in the homology of a column, because all alignment regions have some degree
of uncertainty, no matter how small. Second, in identifying columns as ambiguous, the side knowledge of
the researchers is not taken into account. For example, it is possible that a region could be ambiguous if
the phylogeny is unknown, but relatively unambiguous if the phylogeny is known. Third, methods that
remove gaps or alignment columns are common in phylogenetic inference, where it is common to view each
column as giving independent evidence about the phylogeny. However, methods that remove columns with
gaps are inherently unable to estimate some interesting biological parameters, such as indel rates. Methods
that remove ambiguously aligned columns may also be detrimental to motif detection because they might
remove the columns that contain a motif, when one of the sequences is ambiguously aligned to the other
sequences. However, despite these issues, censoring simulated alignments via the GBLOCKS algorithm has
been shown to improve the accuracy of phylogenies inferred from Clustal W alignments using maximum
likelihood, maximum parsimony, and neighbor joining (Talavera and Castresana, 2007).

4.2 Multiple sequence alignment ambiguity resulting from parameter uncer-
tainty

Many researchers have observed that the outcome of multiple alignment estimation depends on which values
are chosen for parameters that characterize the evolutionary process (Gatesy et al., 1993). These parameters
include the phylogeny used as a guide tree in many alignment methods, and the relative rates or costs
assigned to insertions, deletions, and different types of substitutions such as transitions and transversions.
When different values of evolutionary parameters are used, the estimated alignment may change. Therefore,
uncertainty about the correct values of the parameters leads to uncertainty about the correct alignment.

4.2.1 Identifying ambiguous and unambiguous alignment regions

Gatesy et al. (1993) introduce a procedure called “culling” in order to objectively divide alignments into
ambiguous and unambiguous regions. They propose to generate a collection of alignment estimates from a
range of different costs for gaps and substitutions. Alignment columns which are not present in all of the
resulting alignments are considered to be ambiguous, and are removed or “culled” from the alignment. The
remaining columns are considered to be unambiguously aligned, and are retained for further analysis. This
kind of method is called sensitivity analysis because it attempts to identify alignment regions that are not
“sensitive” to parameter values®. This method is one of the only methods available that can be used to
account for alignment uncertainty in a non-statistical (e.g. cost-based) framework.

Although this procedure is objective in the sense that it is repeatable, the range of parameter values
is chosen based on the researcher’s prior knowledge or subjective beliefs. This range includes all plausible
values for these parameters, and it is the range of parameter values that determines which alignment columns
are considered certain or uncertain. Thus, the degree of ambiguity in an alignment does not depend only
on the sequences to be aligned, but also on prior knowledge about the evolutionary process. For example,
Gatesy et al. (1993) varied transition, transversion, and gap costs. For the gap costs, they used values of 2/3,
1,2,3,4,5,6,7,8,9, 10, 20, 50, 100, 300 times the cost of a transition. However, if the gap cost was known
to be between 2 or 3, then a much narrower range could be used, leading to a greater number of columns
labeled as unambiguous. Also, if the alignment of a region is sensitive to a guide tree parameter, which is the
case in progressive alignment, the region would be considered “ambiguous” if the phylogeny is not known,
but unambiguous if the phylogeny is considered known. Clearly, if the resulting alignment estimates will be
later used to estimate the phylogeny, the phylogeny must not be considered known. Instead, the range of
parameters should include all plausible phylogenies, as well as all plausible values for substitution and indel
process parameters. However, many sensitivity studies do not account for this dependence (Morrison and
Ellis, 1997).

3We note that alignments may also be sensitive to which taxa are used in the analysis. This kind of sensitivity checking is
oriented towards finding results that are robust to internal inconsistencies of the method, and is not discussed here.
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4.2.2 Incorporating ambiguous information

The culling method has the unfortunate downside that it throws out a large fraction of all informative
features. For example, in the two data-sets considered by Gatesy, only 91/250 and 12/250 sites were con-
sidered unambiguous. In addition, the culling method allows only two levels of confidence, ambiguous or
unambiguous, instead of allowing various degrees of certainty about a column. Wheeler et al. (1995) address
these concerns by a technique called “elision”. Similar to culling, this technique also consists of generating
a collection of alignments using a range of parameter values. However, instead of removing columns, the
collection of alignments is concatenated end-to-end. When used as input for phylogeny estimation in a
parsimony framework, this effectively weights each alignment column by the fraction of the total alignments
that it occurs in.

We note that the use of several alternative alignments should not be seen as a contradiction (Lutzoni
et al., 2000) but as an ad hoc way of considering several equally-weighted alternatives. If the parsimony
score for the concatenated alignment is divided by the number of alternative alignments, then the elision
method simply maximizes the average of the parsimony scores over all alternative alignments. However, it
is not usually necessary to carry out this division, because it simply scales the score function and therefore
does not affect the optimal phylogeny estimate. We note that this approach could in principle be applied
in a statistical framework by maximizing either the average likelihood or the average log-likelihood, where
the average is taken over all alignment alternatives. We recommend the first approach, since it corresponds
to the hypothesis that all generated alignments to be equally likely a priori, whereas it is not clear to what
hypothesis the second approach corresponds. However, the second approach is the direct analogue of the
parsimony-based technique of Wheeler et al. (1995), because each alignment has equal influence in selecting
the optimum tree, even though some alignments may lead to a lower score than others.

Because the elision method maximizes a score function that is obtained by averaging over a collection of
alternative alignments, this collection can be seen as representing a probability distribution on alignments
that results from a probability distribution over alignment parameters. From this perspective, the range of
parameter values used in the sensitivity analysis then represents a prior distribution on parameter values.
Unlike the culling procedure, multiple inclusion of a single parameter value leads to higher a priori confidence
in that value. Although a discrete range of separate values may be used in practice, we note that denser
sampling of values from a region leads to increased prior confidence that the true value lies in that region.
For example, the choice of gap-opening costs used for culling means that 10/15 values lie between 1 and 10,
corresponding to a weight of 2/3 on this possibility. In contrast, only three values like between 10 and 300,
indicating a sparser sampling, and a lower prior weight on this region.

4.2.3 Shortcomings of sensitivity analysis

Compared to statistical methods, there are several shortcomings of sensitivity analysis, especially as applied
to cost-based methods. First, the sensitivity analysis methods described above do not consider uncertainty
resulting from near-optimal alignments, but only consider alignment uncertainty that results from parameter
uncertainty. Because near-optimal alignments are ignored, the culling method may fail to identify some
ambiguous regions, and the elision method may fail to sufficiently down-weight them. In addition, ignoring
near-optimal alignments may exaggerate the effect of changing parameter values because it is possible that
the set of near-optimal alignments remains almost the same under new parameter values, but a different
alignment is chosen from this set. However, we note that this shortcoming seems to be primarily an accident
of implementation instead of an essential property of sensitivity analysis. We also note, that if multiple
equally optimal alignments are found, then the culling and elision approaches do consider these alternative
alignments. While this does not seem to us to go far enough, does seem to be helpful feature and a step in
the right direction.

Second, the prior information or subjective beliefs used in sensitivity analysis are not informed by the
data. As a result, conducting a sensitivity analysis with a very broad range of values is likely to result in
the detection of few unambiguous columns. Unfortunately, it is unclear how cost parameters in cost-based
alignment methods can be informed by the sequences that they are aligning. In addition, it is unclear what
it would mean for a value for a cost parameter to be “correct”, since it does not correspond to a biological
quantity. In contrast, given a statistical model of the evolutionary process, a Bayesian approach allows
incorporation of prior knowledge or belief about parameter ranges in the form of a prior distribution, and
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allows this information to be updated by the data. Thus, the posterior distribution may have a significantly
narrower range, representing decreased uncertainty. Unlike sensitivity analysis, broad or “diffuse” prior
distributions on evolutionary parameters do not necessarily lead to extreme uncertainty about the alignment.
Therefore jointly estimating alignments and mutation rates via statistical methods should commonly result
in less alignment ambiguity than a sensitivity analysis, and is less dependent on prior knowledge or subjective
beliefs about parameter ranges.

5 Statistical inference under alignment uncertainty

Sound statistical methods for inferring evolutionary parameters from molecular sequence data in the presence
of alignment uncertainty all take as given only the observed, unaligned sequence data. These methods require
a joint probabilistic model which describes how unobserved evolutionary parameters may combine to generate
the observed sequences. These parameters include the alignment, the tree, and the rate of occurrence of
different kind of mutations. We note that when inferring the tree or mutation rates, the alignment is
considered a nuisance variable which may be summed out. However, the same statistical model may be used
when the alignment is the parameter of interest, to sum out uncertainty in the tree. In this section we give a
brief introduction to the model, notation, and methods described in (Redelings and Suchard, 2007) because
this paper describes how we analyze the data example presented in section 7. Then, using this approach
as a reference we describe other recent developments in statistical estimation of alignments, trees and other
parameters. We then discuss shortcomings and possible improvements.

5.1 Joint Statistical Model
5.1.1 Variables and definitions

We begin by describing the data and unobserved evolutionary parameters in the model. We consider a
collection Y of n homologous molecular sequences. The individual sequences are labeled Y;, indexed by
i =1...n, and have lengths [Y;|. Each sequence Y; has elements Y;[j] indexed by j = 1...|Y;| that take
on values in a set « called the alphabet. Each letter in the alphabet represents a monomer in the molecular
sequences Y. For example, if the sequences are DNA sequences, then the alphabet consists of the nucleotides
{A, T, G, C}, whereas if the sequences are protein sequences, then the alphabet is the set of amino acids.
We note that the alphabet does not contain a gap letter “-” because gaps are not part of the observed data,
but must be inferred.

The data Y are generated from an evolutionary process that is characterized by a number of unobserved
parameters that we seek to estimate. The alignment A and the phylogenetic tree combine to specify the
complete evolutionary relationship of the sequences in Y. The alignment A is separable from the observed
letters in Y because it specifies the homology of these letters without mentioning their values. The alignment
therefore specifies how the letters in Y may be arranged to form the aligned data matrix f. This matrix
indicates which letters are homologous to each other by arranging groups of homologous letters into a single
column. Each row of f contains one of the sequences of Y, so that each column contains one letter from
each sequence, or possibly a missing value. We denote the unknown number of columns C. The phylogenetic
tree may be separated into its topology 7 and its branch lengths T. We assume that the tree is unrooted,
and define the topology as an undirected acyclic graph in which all internal nodes have 3 neighbors. The
topology contains exactly n leaf nodes and n — 3 internal nodes, and each leaf node corresponds to one of the
n observed sequences. The total number of nodes, which we denote by N is therefore 2n — 3. Each branch
b is associated with a branch length 7).

Evolutionary parameters also include parameters ® that characterize the substitution process, and pa-
rameters A that characterize the insertion-deletion process. The substitution parameters ® include the rates
of nucleotide or amino acid replacement and also describe how these rates vary between different sites. The
insertion-deletion parameters A include not only the rates of accepted insertions and deletions, but also
specify the length distribution of accepted indels. We assume that insertions and deletions have the same
rate A\, and that the length of indels follows a geometric distribution with extension probability €, so that
A = () €). Taken together, the entire state space €2 is composed of points w = (Y, A, 7, T, 0, A).
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5.1.2 Probability expression

Traditional methods for estimating the tree or other bioinformatic parameters have assumed that the align-
ment was known with certainty. These approaches therefore implicitly condition on the alignment, leading
to the probability expression

P(Y,7,T,0|A) = P(Y|A,7,T,0) xP(r,T) x P(O) (1)

where, following a common abuse of notation, we write P(X) to represent P(X = x) for any random variable
X taking on a realized constant value x. The first term P(Y|A, 7, T, ®) in equation (1) is the likelihood
for the model, and is determined by the model of the substitution process. The other terms represent prior
distributions on trees and on substitution process parameters, respectively.

In contrast with this traditional approach, a joint probability model allows the alignment to vary, yielding
a modified probability expression

P(Y,A,7,T,0,A) = P(Y|A,7,T,0)xP(A|r,T,A) x P(r,T) x P(©) x P(A). 2)

We note that equation (2) is identical to equation (1) except for the addition of two new terms. We
may therefore base the likelihood P(Y|A, 7, T,®) on traditional substitution models such as reversible,
continuous-time Markov chains. The first new term, P(A|r, T, A), is the prior distribution on alignments
and is based on the insertion-deletion process. We describe a prior distribution on alignments below that is
biologically realistic and penalizes alignments with more indels. The second new term, P(A), is the prior
distribution on insertion-deletion process parameters. We note that the likelihood and the alignment prior
are separable in equation (2) because the substitution process and the insertion-deletion process are separate
and operate independently. This is possible because the alphabet does not include a “gap” letter “-”, so that
the substitution process is not responsible for insertions and deletions.

5.1.3 Substitution model

The substitution model determines the likelihood P(Y]A, 7, T, ®) that the letters Y are observed. This
probability may be expressed in terms of the aligned data matrix f that depends on both the data Y and
the alignment A, as

P(Y|A,7,T,®) = P(f|r,T,0). (3)

This approach is useful because we assume that observations in each column of the aligned data matrix
are independent realizations from the substitution process, so that the full likelihood is the product of the
likelihood of each column in the aligned data matrix f. We follow common practice in molecular phylogenetics
by using reversible continuous-time Markov chain (CTMC) models to describe the process of substitution in
each column (Goldman, 1993) and will not describe them here. Therefore, in order to express this probability
we must define the aligned data matrix f and describe how to construct it from the data Y and the alignment
A.

The matrix f consists of rows indexed by i = 1... N and columns indexed by ¢ = 1...C. The letters in
row ¢ of f all come from sequence ¢ and must occur in order. The matrix f represents the hypothesis that
all the letters in each column ¢ descend from a single residue in the sequence of the common ancestor. If
no letter in sequence ¢ is homologous to other residues in column ¢, then we place the a gap “-” at f;. to
indicate a missing value. In addition to the observed leaf sequences, the matrix f also includes unobserved
sequences at internal nodes as missing data. These sequences are composed of Felsenstein wildcards that are
represented by “x” to indicate that a letter is present but its value is unknown.

We introduce the matrix M(A) to specify how the alignment A arranges the data Y into the matrix
f while remaining separable from f. The matrix M(A) has the same dimensions as f, and specifies which
letter of sequence Y; belongs in column ¢ through the equation

fie = Y;[M;]. (4)

¢

If no element of Y; belongs in column ¢, then M;. = ¢ —’ and we define Y;[* —’] = ¢ — . Figure 1 illustrates
the relationship of Y, M(A), and f for a 4-taxon example.
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Figure 1: Construction of aligned data matrix f from data Y and alignment A. The first column shows some
unaligned sequences Y ™" of various lengths. These sequences include the observed leaf sequence data Y as
well as unobserved sequences Y5 and Yy at internal nodes of the tree. The lengths of the sequences Y5 and
Ys are unknown and all possibilities must be considered; one possibility is shown. The second column shows
M(A), a matrix that parametrizes the multiple sequence alignment A by specifying where gaps appear in
the aligned data matrix and which letters of Y appear in each column. Sequences at internal nodes are
included in the multiple sequence alignment. The third column shows the aligned data matrix f, constructed
by combining Y and M(A). Letters that are present at internal sequences are unobserved and are drawn as
Felsenstein wildcards. While the alignment is separable from the data, as shown in column 2, the aligned data
matrix f is not. The fourth column contains the evolutionary tree topology 7. Each branch b is associated
with a pairwise alignment A®) between the two sequences at the endpoints of the branch. This is made
possible by the inclusion of the missing data Y5 and Yg in the alignment A, and allows each indel to be
localized to a particular branch. For example, the shaded indel in column 3 of f must occur on the internal
branch of the tree.

5.1.4 Alignment prior

As described above, the multiple sequence alignment A includes alignment information for internal node
sequences as well as leaf sequences. However, the observed data Y specifies the letters only for leaf sequences
(Figure 1). The alignment A also specifies the length of all sequences in addition to homology information,
so that A must agree with Y on the length of observed sequences, but the length of unobserved sequences
at internal nodes of the tree is unknown.

Augmenting the alignment to include homology about sequences at internal nodes is beneficial because it
allows us to decompose the multiple sequence alignment A into a collection of pairwise alignments (Holmes
and Bruno, 2001). Given a topology 7 with B branches, A can be decomposed into a tuple of pairwise
alignments (A™M) ... A(B)). Each branch b of the tree is associated with a pairwise alignment A®) that
specifies the homology of the sequences at each end of the branch. Representing the alignment A in this way
allows us to construct a distribution on multiple sequence alignments from a distribution vy;, on pairwise
alignments that is parametrized by indel rate A and branch length ¢, for branch b. Pairwise alignments on
each branch will be independent conditional on the lengths of the sequences at the internal nodes because
evolution occurs independently on each branch of the tree. This leads to an alignment prior of the following
form

B—1PVM A(b)
P(A|T7T7A) = Hllil_ I¢('bAA(i)2 )7 (5)

where ¢(-) indicates the time-independent sequence length distribution (Redelings and Suchard, 2007). We
note that augmenting the alignment to include internal sequences is beneficial also because it specifies exactly
on which branch of the tree each indel occurs, making it possible to model indel events instead of modelling
gaps (Figure 1).
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5.2 Inference under a statistical model

Three methods for joint estimation of alignment and phylogeny have been proposed to date, and we compare
and contrast these methods here. Redelings and Suchard (2005, RS05) and (Lunter et al., 2005, LMDJHO05)
draw inference in a Bayesian framework using Markov chain Monte Carlo (MCMC) integration, whereas
Fleissner et al. (2005, FMHO05) employ a maximization approach using simulated annealing. Both MCMC
and simulated annealing are guaranteed to compute exact solutions given sufficient processing time. However,
in practice, both approaches sacrifice some degree of precision in order to avoid considering all possible
combinations of alignments, trees, and other parameters, which would be computationally prohibitive.

MCMC differs from the simulated annealing approach of FMHO05 in two major ways. First, MCMC
naturally leads to measures of uncertainty, such as posterior confidence intervals for continuous parameters
and posterior probabilities for tree topologies, alignments, and other discrete parameters. As a maximiza-
tion approach, the FMHO05 method instead generates a single parameter estimate, but does not produce a
measure of confidence in the estimate that would reflect the degree of evidence for it in the data. However,
the maximization approach may be significantly faster, since it only needs to find the optimum tree and
alignment, instead of visiting a large number of other points to yield measures of confidence.

Second, the Bayesian approach involves summing over all possible alignments in order evaluate the relative
probability of evolutionary tree topologies and other parameters. In contrast, the FMHO05 approach does
not sum over all possible alignments, but instead maximizes over them. This approach differs from the
Bayesian approach and also from the standard maximum likelihood procedure, which involves maximizing
the likelihood P(Y |7, T, ®, A) of the observed data. Computation of this likelihood naturally involves a sum
over all alignments, since

P(Y|r,T,0,A) = Y P(Y,A|r,T,0,A).
A

The FMHO05 approach avoids computing or approximating this sum and instead maximizes the likelihood
P(Y,A|r, T,0, A) of the observed data and an unobserved alignment. The approach therefore maximizes
over the alignment A even though it is a latent variable representing missing data and should instead be
summed out, perhaps using the expectation-maximization (EM) algorithm. The choice to maximize over
the alignment may therefore lead to biased estimates of branch lengths and other parameters, as mentioned
above. However, because it may lead to faster computation, it may allow analysis of larger data sets.

5.2.1 Computational efficiency: MCMC and simulated annealing

In order to be computationally efficient both MCMC and simulated annealing require well-designed “transi-
tion kernels” that propose new alignments and trees. Proposed new alignments and trees should frequently
be of similar or higher probability than the previous value, or they will be rejected, leading to wasted com-
putation time. In addition, proposed values must sometimes be substantially different that current values.
If this is not the case, then simulated annealing methods will move only slowly away from the starting
point, or fail to explore the full parameter space, and thus fail to find the optimum point in a short time.
Similarly, MCMC proposal functions that fail to propose substantially different points may lead to a failure
to converge to the equilibrium distribution, or a high autocorrelation between adjacent samples and a low
effective sample size. MCMC samplers may be used as simulated annealing search algorithms by raising
the posterior probability density to successively higher powers in each iteration. This approach is roughly
followed by FMHO05, with the exception that certain details required for correct sampling from the posterior
distribution were ignored because they were not necessary to find the optimum.

Bayesian sampling of multiple sequence alignments via MCMC was pioneered by Holmes and Bruno (2001,
HBO01). The HBO1 approach samples the alignment under the TKF1 model given a fixed tree topology.
HBO1 introduced the idea of augmenting the alignment to include homology information about internal
node sequences, and also introduced two novel transition kernels that require this augmentation in order
to resample parts of the multiple sequence alignment. While the augmentation enables the use of the new
HBO1 transition kernels, it also makes it difficult to change the tree topology. This is because the augmented
alignment makes sense only on a given tree topology, since it specifies a pairwise alignment for each branch.
Therefore, when changing the tree topology, a new indel history must be proposed that is consistent with
the new topology.
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In order to relax the constraint of a fixed tree, each of the three joint-estimation methods takes a different
approach that has unique advantages and disadvantages. The RS05 and FMHO05 methods retain alignment
augmentation, while the LMDJHO5 approach dispenses with it. The LMDJHO05 approach is able to dispense
with alignment augmentation because it uses an “indel peeling algorithm” to evaluate the probability of
unaugmented alignments on a tree by summing over all possible augmentations (Lunter et al., 2003). The
indel peeling algorithm is currently restricted to the TKF1 model, and so the LMDJHO05 approach assumes
that all gaps have unit length. Summing out the augmentation is beneficial to the LMDJHO05 approach
because it means that new tree topologies can be proposed without being constrained to be consistent with
the current indel history. In addition, summing over missing data generally leads to decreased autocorrelation
between adjacent MCMC samples, and thus improves mixing efficiency compared to augmenting with missing
data if the time per sample is not increased excessively by the summation.

However, the lack of alignment augmentation has the drawback that the HBO1 transition kernels for
alignment sampling are not available. The second of these transition kernels (HB01-TK2) simply updates
the alignment augmentation, and therefore is not needed in the LMDJHO5 approach. However, the loss
of the first of the transition kernels (HBO1-TK1) is an important drawback. The HB01-TK1 transition
kernel divides the alignment into two sub-alignments along a branch of the tree, and re-aligns the two sub-
alignments with respect to each other. This proposal is an efficient method for resampling alignments, and
is never rejected because the proposal is proportional to the target distribution. However, this is achieved by
resampling the pairwise alignment of two (possibly unobserved) sequences at either end of the tree branch.
LMDJHO5 is not able to re-align sub-alignments in this way because it does not store alignment information
for internal sequences, nor can it sample this information from the correct distribution to use temporarily.
Thus the LMDJHO5 approach is instead forced to propose alternative alignments that may be rejected.
Because the probability of rejection grows with sequence length, only blocks of the alignment of randomly
chosen lengths have their alignment resampled in this fashion.

In contrast, the RS05 approach extends the HBO1 method to sample topologies without removing the
alignment augmentation for internal node sequences. By summing out only the alignment of sequences at
internal nodes that lose definition during a nearest-neighbor interchange (NNI), the RS05 approach is able
to compare nearby topologies. The RS07 method extends this approach to subtree-prune-and-regraft (SPR)
changes to tree topology as well. Because these summations are carried out using dynamic programming,
the alignment information for internal node sequences that is summed out in order to change topologies
may be resampled to be compatible with the topology that is chosen, thus reconstituting the alignment
augmentation. In summary, traditional transition kernels for topologies, such as NNI and SPR, are modified
in the RS05 approach to resample the indel history as well as the topology in order to maintain compatibility
between the two. Unfortunately, this kind of procedure may be too computationally inefficient to use for
larger topology changes, such as those induced by tree-bisection-and-reconnection (TBR). Thus, the RS05
approach is constrained in the topologies that it may propose compared to the LMDJHO05 approach.

RS05 introduces two novel alignment transition kernels can substantially improve mixing efficiency. The
first of these (RS05-TK1) resamples alignment information about unobserved sequences at two adjacent
internal nodes which keeping fixed implied the alignment between all other sequences. This transition kernel
is helpful for efficient mixing of MCMC, and is also required for summing out local alignment augmentation
to allow NNI proposals. The second of these novel alignment transition kernels (RS05-TK2) divides the
alignment into two sub-alignments along a branch of the tree, and simultaneously resamples the alignment
of the two sub-alignments and the alignment information about an internal node sequence at one end of
the branch. This transition kernel helps to avoid improbable intermediate states, and may improve mixing
efficiency dramatically. For example, this transition kernel improved convergence speed by more than 70-fold
in a simple 12-taxon example (Redelings and Suchard, 2005). The RS05-TK2 transition kernel is used to
sum and resample alignment augmentation for SPR topology changes. We also note that the RS05-TK2
transition kernel subsumes both HB01-TK1 and HB01-TK2 in the sense that it resamples the alignment
with fewer constraints than either of HB01-TK1 or HB0O1-TK2.

5.2.2 Insertion/deletion models

The three approaches to joint estimation of alignment and phylogeny make use of three different indel
models. The FMHO05 approach makes use of the TKF2 indel model. The TKF2 model has the benefit of
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allowing multiple residue indels, as well as the benefit of being a continuous-time stochastic process that
specifies how indel events occur along a branch. We note that the TKF2 model makes the biologically
unrealistic assumption that each sequence is composed of unbreakable fragments, which are inserted or
deleted as a unit, thus disallowing overlapping insertions and deletions. The drawbacks of this approach
may be largely removed by allowing the fragment boundaries to be different and independent on each branch
of the tree, so that indels on different branches may indeed overlap. However, in the FMHO5 approach, these
fragments boundaries are not allowed to differ across branches of the tree. This choice results in simpler and
faster dynamic programming algorithms, but leads to unrealistically low predictions for the probability of
overlapping indels.

In contrast to the FMHO5 approach, the other two approaches each give up one of the advantages of
the TKF2 model. For example, the LMDJHO05 approach uses the TKF1 model. Like the TKF2 model, the
TKF1 model is a continuous-time stochastic process, and so it describes the generating of individual indel
events along each branch of the tree. However, it allows only single-residue indels, and therefore may fail
to cluster gaps in its alignment estimates. In addition, by treating a deletion of several residues as several
independent deletions of one residue, the TKF1 model may over-weight the phylogenetic evidence in shared
indels of multiple residues.

The RS05 approach uses a model that allows indels of multiple residues, but is based on an HMM instead
of a continuous-time stochastic process. As a result, the RS05 model places a distribution directly on pairwise
alignments and does not describe the dynamics by which indel events accumulate along a branch of the tree
to yield a pairwise alignment between ancestor and descendant sequences. Additionally, in the RS05 model
the probability of an indel occurring on a branch is independent of the branch length. This drawback was
remedied in Redelings and Suchard (2007, RS07), which introduces an indel rate parameter, instead of just
specifying the probability that an indel occurs on a branch. As a result, the RS07 model has biologically
interpretable parameters similar to a TKF2 model in which the insertion and deletion rates are equal, and
leads to a distribution on pairwise alignments that is approximately the same as the distribution generated
by the TKF2 model for short times.

5.3 Improved statistical models of insertion and deletion

Statistical methods for inferring alignments or for inferring other parameters in the presence of alignment
uncertainty all rely on stochastic models of the insertion-deletion process to correctly down-weight alignments
with more indel events. In order to yield high-quality inferences, such models must be biologically realistic
in specifying the frequency of occurrence for different kinds of indel events. Unfortunately, there is often a
trade-off between biological realism and computational efficiency, so researchers must seek a balance between
the quality of inference and speed of inference, instead of employing the most realistic models that are known.

Since the initial development of the TKF1 model, several extensions have been proposed. The TKF1
model has just two additional parameters: the insertion rate A and the deletion rate p. The TKF1 model
assumes an exponential distribution of sequence lengths at equilibrium with mean A/(x — A). Only single
residues may be inserted or deleted, leading to “linear gap penalties”. To remedy this problem, the TKF2
model applies the TKF1 model to unbreakable sequence “fragments” containing multiple residues. The
number of residues in a fragment is random and is distributed according to a geometric distribution with
parameter € and mean 1/(1 — €). This leads to “affine gap penalties.” Thus, insertion and deletion of
fragments lead to multiple-residue insertions and deletions. The downsides of this approach are that (a)
imaginary fragment boundaries remain after fragments are inserted (b) it is impossible to delete parts of a
fragment (c) indel rates are now per-fragment instead of per nucleotide. Lastly, another difficulty that is less
important, but still real, is that (d) probably neither indel mutations nor accepted indels have a geometric
length distribution (Cartwright, 2006). A geometric length distribution is significantly easier to deal with
computationally, but tends to underestimate the probability of seeing long indels. There have therefore been
several attempts to improve on these models. The models are used at equilibrium so that the total forward
and backward rates are equal. Length distribution is geometric (TKF1) or roughly geometric (TKF2). In
both the TKF1 and TKF2 models, pairwise alignments can be estimated in O(N M) time for two sequences
of length NV and M. One approach that avoids some problems with the TKF2 models is simply to assume
that fragment boundaries can be different on each branch of the evolutionary tree. This allows a fragment
that is inserted on one branch to be partially deleted on a different branch of the tree. This technique
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is attractive because it does not substantially increase the computational burden. However, other, more
accurate models have been proposed as well.

Miklos et al. (2004) introduce a new model that improves on the TKF1 model by allowing insertions and
deletions of multiple residues without relying on unobserved fragments as the TKF2 does. Furthermore, this
model allows an arbitrary length distribution for indels instead of requiring a geometric length distribution,
and is therefore called the “long indel model.” However, conducting inference under this model is significantly
more computationally burdensome than the TKF1 or TKF2 models. Firstly, the dynamic programming
algorithm for this model is O(M?N?) when no approximations are made, instead of O(M N). Secondly, the
dynamic programming recursion involves terms whose value cannot currently calculated analytically. Instead,
these terms are estimated using MCMC methods to approximately calculate “trajectory likelihoods”, where all
intermediate events on a branch must be explicitly considered. Additionally, certain reasonable assumptions
about the number of overlapping indel events were made to ensure computational tractability. While this long
indel model does yield improved estimates of pairwise alignments, it may be too computationally expensive
to incorporate in multiple sequence alignment estimation. Despite this fact, the long indel model has been
used to improve pairwise alignment accuracy.

One statistical issue that is not addressed by current models is the sequence length distribution. Most
statistical models assume that over evolutionary time the equilibrium distribution on sequence length will
converge to a geometric distribution whose mean is the same for all genes. The use of a geometric distribution
implies that a shorter sequence length is always more likely than a longer sequence length. Although this
assumption is mathematically convenient, it seems more biologically realistic that each protein family would
have a separate mean length over evolutionary time, and that the most likely length would not be zero.
When analyzing a collection of homologous genes in a Bayesian framework, it would be desirable to use an
informative prior on the mean sequence length that is based on an empirical distribution of protein family
lengths in curated databases. However, the degree of variation around this mean could be estimated from
the homologous genes themselves. Unfortunately, the failure of current models to separate the distribution
of lengths within and between protein families prevents informative priors from being used.

We note that equilibrium sequence length distributions are determined entirely by mutation pressure,
and thus imply completely neutral evolution on sequence lengths. This unrealistic assumption could be
replaced in two separate ways. First, it is possible to add to an indel model selection for sequence length
per se. Second, it is possible to consider that some “conserved” residues are much less tolerant of deletion
over evolutionary time, and that the number of such residues within a protein remains roughly constant
within the protein family. This second option would tend to counteract the assumption within current indel
models that over a long evolutionary time period, all ancestral residues should be deleted and replaced with
newly inserted residues. It would also be able to model heterogeneity in the indel process and handle “indel
hot-spots” similar to site-heterogeneity models for substitution rates. As an extreme example of this type,
one could consider a model in which some unknown fraction of residues may never be deleted, similar to the
invariant sites assumption for substitution models (Thorne et al., 1992).

5.4 Limitations of statistical methods

Although statistical techniques are now available for making robust inferences in the presence of alignment
ambiguity, these methods have important limitations. First, these techniques may require vast amounts
of computer processing time, severely limiting the size of data sets that can be analyzed in practice. For
example, an MCMC analysis under the model described in equation (2) of 12 protein sequences with lengths
of about 450 amino acids required seven days in 2005 (Redelings and Suchard, 2005). While such analyses
are feasible, they indicate that current approaches to joint estimation of alignment and phylogeny are not
able to cope with either long sequences or a large number of taxa. In the current manuscript we analyze a
25-taxon data-set, but we note that the length of the sequences is extremely short at about 130 nucleotides,
indicating a trade-off between sequence length and number of taxa.

Second, the statistical models of indel formation are limited in the types of biological processes that they
consider. For example, current models assume that insertion and deletion rates are independent of the DNA
or amino-acid sequence where they occur, and are distributed uniformly across the DNA or protein molecule.
In addition, current models do not allow duplication or within-sequence homology, but assume that inserted
sequences are random and independent of the parent sequence. These assumptions can lead to inaccurate
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estimates of phylogenetic trees and other parameters when the sequence data has evolved according to indel
processes that are not present in the model. For example, in phylogeny estimation, indel events are all
assigned the same weight, regardless of whether or not they occur in an indel hot-spot. Expansion and
contraction of simple sequence repeats may be more rapid than other types of indels due to slipped-strand
mispairing, but these changes will not be appropriately down-weighted.

6 Representing alignment ambiguity

Alignment ambiguity is more difficult to represent than ambiguity in continuous parameters, such as branch
lengths or indel rates. This follows from the fact that alignments are discrete and unordered, so that one
cannot summarize their distribution by a mean and variance, or by a median and a confidence interval of
the form (a,b). Alignment ambiguity must be represented either for visual display, or for use as input to an
inference procedure. When representing alignment ambiguity visually, it is often more important that the
alignment distribution be summarized in a single figure than that all the information in the distribution is
preserved.

6.1 Alignment ambiguity for use in further analysis

The simplest approach is to divide an alignment into certain and uncertain regions. This has the downside
of assuming that homology is known with complete confidence (which is unlikely) or else not known at all.
That is, there are no degrees of confidence in homology statements. We note that the issue of confidence is
theoretically separate from how the confidence measure is calculated. Even the best method for assessing
confidence will be of marginal usefulness if it is limited to declaring alignment regions “certain” or “uncertain.”
However, the results of this method are easy to visualize. This representation of alignment ambiguity is used
by the culling method and the GBLOCKS approach.

The next method of representing alignment confidence is by a list of alignments of equal weight, as in
the elision method. For analyses that treat columns independently, columns that occur in many alignments
effectively have a higher weight than columns that do not. If alignments themselves may be repeated
multiple times, then we can replace the list by a set of unique alignments associated with integer weights
that indicate the number of times these alignment occur in the previous list. This list may then indicate
a collection of plausible alignments, along with their weights. However, we note that the elision method
explicitly concatenates the alignment end-to-end, and that the weights lead to a weighted sum of parsimony
scores for each tree. We note that a list of alignments is difficult to visualize.

Finally, a general framework for dealing with certainty and uncertainty about alignments is to consider a
probability distribution on alignments. This distribution may be represented by a sample, and this sample
will most likely be unweighted since the number of possible alignments makes it unlikely a single alignment
will recur. However, the sample conceptually represents a weighted collection of alignments, as opposed to
an unweighted collection. This conception naturally arises in the Bayesian statistical framework, in which
case the posterior alignment distribution must be represented.

6.2 Graphically representing alignment ambiguity
6.2.1 Pairwise alignments

A probability distribution on alignments between two sequences can be summarized on a 2-dimensional
sheet of paper or computer screen using a path graph representation (Naor and Brutlag, 1994). Given two
sequences of length M and N, each pairwise alignment corresponds to a path through an integer lattice
from (0,0) to (M, N) such that diagonal edges represent match columns and vertical or horizontal segments
represent gap columns. For example, the edge (i — 1,5 — 1) — (4¢,7) indicates that character i or the first
sequence and character j of the second sequence are homologous. Such paths are known as path graphs, and
correspond to a route through the dynamic programming matrix.

One method for using path graphs to indicate alignment ambiguity is to color each possible edge according
to the probability that it occurs in the alignment (Figure 2). For example, edges may be colored black if
they are certain to occur, white if they are certain not to occur, and shades of gray for intermediate degrees
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Figure 2: Weighted path graph representation allows easy comparison of two pairwise alignment distributions.
While only the alignments between the Homo and Sulfolobus sequences are shown, the full analyses are
based on (a) 6 sequences and (b) 25 sequences respectively. The pairwise alignment distribution based on
25 sequences contains substantially less alignment ambiguity, indicating that alignment ambiguity between
a pair of sequences may decrease when additional sequences are included in the analysis. Line segments with
high posterior probability are darker and thicker, while edges with lower posterior probability are colored
with lighter shades of grey. The posterior probabilities in this figure are based on the 25-taxon 5S rRNA
data set (b) described in the Results section and a 6 sequence subset of those sequences (a). The RS07 indel
model was used, along with the GTR+gwF-+log-Normalg model (Section 7.1).

of certainty. We note that representation of the alignment distribution for 2 sequences may not capture
the full information in the distribution because it does not represent correlations in support for adjacent
columns. Additionally, when an insertion is adjacent to a deletion, multiple paths may correspond to the
same homology structure, leading to trouble with path graph interpretation. However, drawing weighted path
graphs in this manner does successfully convey which regions of the alignment contain plausible alternatives,
and also conveys how plausible these alternatives are.

Although this method could in theory be used to represent alignment distributions of n sequences where
n > 2, such representations are impractical because they would require an n-dimensional plotting surface.
Even a 3-dimensional version of this technique is not practical because the most probable edges may be hidden
behind less probable edges from every viewing angle. Thus, 2-dimensional projections of a 3-dimensional
image are not sufficient. Another alternative for using path graphs to represent a distribution on multiple
alignments is to draw all projected pairwise alignments separately. This technique can be useful when n is
small, although information about the correlation between sequences is lost. However, the number of such
graphs grows quadratically with n, and so quickly becomes unmanageable for large n.

6.2.2 Selecting a representative multiple sequence alignment

When summarizing multiple sequence alignment distributions, one common approach is to construct a repre-
sentative alignment and then annotate it to indicate the degree of confidence in various regions. Selection of
a representative multiple sequence alignment is itself a challenging task. One criterion would be to select the
multiple sequence alignment with the highest posterior probability. However, this criterion has two draw-
backs - one theoretical, and one practical. First, the most probable alignment may not be very probable,
and so that individual columns may have low posterior probability. Second, it is common for each alignment
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sampled via MCMC to be unique. This indicates that the most probable alignment may not have been
sampled and that it is not possible to determine the posterior probability of the alignments that have been
sampled. One simple way around this problem is to select the multiple alignment from the sampled point
with the higher posterior probability (Redelings and Suchard, 2005). Although such estimates are always at
hand in an MCMC approach and give usable results, they are ad hoc, fail to marginalize properly, and are
rarely repeatable. One way around these difficulties is to select a representative alignment by maximizing the
sum of column probabilities, or “posterior decoding” (Durbin et al., 1998; Lunter et al., 2005). This approach
is practical because each column often occurs enough that its posterior probability may be estimated from
MCMC samples, although a full alignment does not occur sufficiently often. However, it is not clear how
such an alignment should be found if the researcher desires to look beyond the MCMC samples that have
been generated in order to find the maximum. Dynamic programming may be used to find a maximum
posterior decoding alignment for two or perhaps three sequences, but the speed and memory requirements
grow exponentially in the number of sequences in a multiple sequences alignment, making such approaches
impractical.

6.2.3 Annotating a representative multiple sequence alignment with column probabilities

Once a representative alignment is found, this alignment must be annotated to indicate the degree of con-
fidence in various regions. For maximum posterior decoding alignments, a natural measure of confidence is
the posterior probability of each column, which may be plotted above the chosen alignment. This method
clearly indicates when a column is strongly aligned. However, when a column has a low posterior probability,
there are a number of possible reasons. A low column probability could result because two sub-groups of
characters are weakly aligned to each other, but strongly aligned within groups. Alternatively, a low column
probability could result because all characters are weakly aligned to each other. Thus, the use of only one
value per column is not capable of capturing the confidence in partial columns. We also note that, if one
sequence such as an outgroup is weakly alignment to all other sequences, then both alignment selection by
posterior decoding and alignment annotation using column probabilities may be undermined.

6.2.4 Alignment uncertainty (Au) plots

Alignment uncertainty plots offer an alternative annotation method to the use of column probabilities (Re-
delings and Suchard, 2005). The underlying idea behind Au plots is to annotate each letter separately by
shading or coloring it to indicate the posterior probability that it is placed in its correct column. Thus,
when annotating a multiple sequence alignment with n sequences, an Au plot may use n values instead of
just the one value of column probability. We note that Au plots do not depict exact probabilities. Instead,
they approximate the posterior probabilities for the n(n — 1)/2 pairs of characters in each column using
a tree structure with only 2n — 3 branch lengths. Each character is then annotated with the probability
that it aligns with a hypothetical character at the root of the tree, and shaded accordingly (Figure 3). This
procedure can be easily depict confidence in a partial column even when a few characters in the column are
weakly aligned. Thus, when the exact position of a gap within a sequence is ambiguous, adjacent characters
in the same sequence may be lightly shaded to indicate ambiguity.

6.2.5 Multidimensional scaling

Multidimensional scaling offers an alternative to Au plots and provides a starting point from which to
assess convergence in Bayesian samplers that explore alignment uncertainty. Multidimensional scaling is a
statistical technique commonly used for high-dimensional data visualization (Young and Hamer, 1987; Borg
and Groenen, 1997; Cox and Cox, 2001). Multidimensional scaling algorithms start with a sample-to-sample
distance (or similarity) matrix D = {D;;} and assign a location #; in a low-dimensional, visualizable space to
each sample. Optimal assignments proceed via minimizing a stress function, such as the Kruskal-1 function.
Hillis et al. (2005) recommend multidimensional scaling to explore phylogeny distributions. Setting D;; =
m(A(i), AU )), where m(+, ) is an arbitrary distance metric between two multiple sequence alignment samples
A and AU allows for multidimensional scaling projections of multiple sequence alignment distributions.
In low-dimensional spaces, visual comparisons can assess differences between distributions. This is useful for
assessing convergence and interactive displays.
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Figure 3: Au plot showing alignment uncertainty for 5S rRNA sequences.
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is summarized in this figure is the posterior distribution on multiple sequences alignments that is calculated

in Section 7.

27



Starting
Sample

Dimension 2

Chain Step #—3—
[T T T

Dimension 1

Figure 4: Alignment burn-in of a Bayesian sampler set visualized via multidimensional scaling. The data
set consists of 12 taxa that span the tree of life. The data set contains sequence of EF-1a and EF-Tu (its
bacterial homolog). Sequences are about lengths are about 450 amino acids in length.

Distance metrics for multiple sequence alignments remain under-developed. Well-studied, however, are
metrics on pairwise sequence alignments. Schwartz et al. (2005) provide a biologically interpretable metric
for pairwise alignments. The metric counts the number of homology statements on which two pairwise
alignments disagree. Schwartz et al. (2005) also suggest how to construct a metric m(-,-) on multiple
sequence alignments as the sum of all possible pairwise alignment metrics; while this metric overcounts
homology disagreements because the metric ignores the evolutionary correlation between pairs, the metric
warrants consideration as the underlying phylogeny is unknown.

Figure 4 demonstrates the use of multidimensional scaling to visualize convergence of alignment samples.
The 100 samples depicted in the figure are drawn from a posterior simulation involving 12 taxa that span
the Tree of Life. After approximately 80 steps, the alignment samples appear to reach convergence.

7 Example - 5S ribosomal RNA

As an illustration of the above techniques, we examine a data set consisting of 25 5S ribosomal RNA gene
sequences that displays substantial alignment uncertainty. The 5S ribosomal RNA is present throughout
the Tree of Life except in a few basal eukaryotes such as Giardia. We therefore include 5S sequences from
organisms spanning the Tree of Life, including 7 Eubacteria, 9 Archaea, and 9 Eukaryotes. The 5S rRNA
is relatively short, ranging from 111 nucleotides to 131 nucleotides in this data set. Although we have
previously shown that alignment uncertainty is so high that there is little phylogenetic information in a
data set of only 5 sequences (Redelings and Suchard, 2005), we seek to show that this data set containing 25
sequences does indeed contain substantial phylogenetic information. However, this data set must be analyzed
using joint estimation instead of sequential estimation in order to avoid conclusions with strongly supported
phylogenetic errors.

7.1 Model and priors

For the nucleotide substitution process we employ the GTR+gwF+log-Normalg model. We also con-
sider the simpler GTR+gwF model that assumes no rate heterogeneity between sites. The GTR+gwF
model is a reversible continuous-time Markov chain model of nucleotide substitution. Nucleotide frequen-
cies are specified by parameters w = (w4, 71, TG, Tc). This yields 3 degrees of freedom, because of the
constraint that the sum of the frequencies must be 1. The GTR+gwF model also contains parameters
Y = (Yar,Yac, Vac, ¥re, vro, Yao) specifying the symmetric exchangeability of each pair of nucleotides
independently from their frequencies. Because only the relative rates can be estimated from data, we follow
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common practice in scaling the exchangeabilities so that the mean substitution rate is 1. Because of this
constraint, these 6 parameters yield only 5 degrees of freedom. Finally, the GTR+gwF model contains an
additional parameter f € [0,1] that specifies whether common letters occur more frequently because they
are more highly conserved (low f) or because they are more often proposed as replacements for other letters
(high f). The +gwF formulation (Goldman and Whelan, 2002) may be reduced to the more common +F
formulation (Cao et al., 1994) by fixing f = 1. We model rate heterogeneity between sites using a log-Normal
distribution that is approximated by a discrete distribution with 8 bins. We set the mean of the distribution
to 1, and parametrize it by its standard deviation V', so that there is no heterogeneity when V' = 0. The
substitution model is therefore fully characterized by ©® = (m, 4, f, V) with 10 degrees of freedom.

For the insertion-deletion process we use the RS07 indel model from Redelings and Suchard (2007). This
model contains 2 parameters: the insertion-deletion rate A\, and the gap extension probability €. Therefore,
the insertion-deletion model is characterized by A = (), €).

We place a uniform Dirichlet prior on 7v. We place a non-uniform Dirichlet prior on 1 with weight 4 on
transversions and weight 8 on transitions (Zwickl and Holder, 2004). We place a Uniform(0,1) prior on f,
and we place a Laplace prior on log V' with scale 1 that is centered at —3. This leads to a prior median for V'
of about 0.05. We place a Laplace prior on log A that is centered at —5 with scale 1.5 and an Exponential(5)
prior on the mean indel length minus one. For the prior on phylogenies, we place a uniform distribution
on tree topologies and an Exponential(x) prior on branch lengths, where p is a hyper-parameter. We then
place an Exponential(1) prior on pu.

7.2 Results

Inference under the model was conducted using the MCMC sampling program BAli-Phy. We ran two chains
from different starting positions and obtained 400,000 samples from each chain. This analysis took about
two weeks to complete on a Pentium 4 processor. We discarded the first 40,000 samples from each chain as
burn-in. We additionally analyzed the same data with the alignment held constant to either the Clustal W
estimate or the Muscle estimate. For these latter analyses, we used the same burn-in period and the same
number of samples. However, we did not make use of an indel model, thus ignoring the phylogenetic evidence
of shared indels and considering only shared substitutions.

We report estimates of model parameters for both models in terms of the posterior median and a 95%
Bayesian credible interval. As shows in Table 1, the log indel rate In A was estimated as —4.24 with rate
heterogeneity, and as —3.41 without. However, we note that because the branch lengths are defined in
terms of substitutions, the indel rate here is defined relative to the substitution rate, and so in this case
the difference in indel rate seems to indicate only that the substitution rate scale has changed. This is
indicated by the fact that the total tree length |T'| is estimated as 16.7 with heterogeneity, but 7.57 without.
Additionally, the mean branch length p was estimated as 0.365 with rate heterogeneity and 0.165 without.
Thus A - p remains roughly constant.

7.3 Bias and Alignment uncertainty

The 5S rRNA data set exhibits alignment uncertainty in two major ways. First, the posterior alignment
distribution is diffuse, placing similar support on a large number of distinct alignments. This is illustrated
in the Au-plot in figure 3. Because the posterior topology distribution is also diffuse, it is possible that
the diffuseness of the posterior alignment distribution results from the diffuseness of the posterior topology
distribution. We therefore selected the MAP topology from the joint analysis with heterogeneity and re-
ran the analysis with the topology fixed to this MAP topology. However, fixing the topology increases the
fraction of residues aligned at the 0.5, 0.75, 0.95, and 0.99 levels only slightly (data not shown). Therefore
we conclude that alignment uncertainty in the posterior distribution is not primarily a result of topological
uncertainty.

Second, the alignment is ambiguous enough to be biased by the guide tree used during the progressive
alignment procedure, so that the use of a single alignment estimate constructed using progressive alignment
leads to substantial bias in phylogeny construction. For example, when the alignment is fixed to the Clustal
W alignment estimate, the posterior probability (PP) that Eubacteria are monophyletic is only 0.283 with
a posterior log odds (PLOD) score of -0.405. This is because the Eubacterium taxon Campylobacter is

29



Table 1: Parameter Estimates

Parameter estimates from the joint model with and without rate heterogeneity. The posterior median and
a 95% Bayesan credible interval are reported for each parameter. Each row contains parameter estimates
under a different model. The first and second row refer to models in which indel information is not used,
and the alignment is fixed to the Clustal W and Muscle alignment estimates respectively. The third and
fourth rows refer to models in which alignment is allowed to vary, and substitution rate heterogeneity is
absent /present, respectively. Note the differences in alignment length and in the parsimony score when the
alignment is allowed to vary. This may indicate that Clustal W and Muscle align residues too readily,
resulting in shorter alignments with more mismatches.

Model log A log e f
no indel model / Clustal — — 0.382 (0.0170,0.956)
no indel model / Muscle - — 0.412 (0.0218,0.962)
no rate variation —341 (-3.77,-3.07) —0.716 (—1.00, —0.492) 0.407 (0.181,0.962)
GTR+gwF +log-Normals —4.24 (—4.83,-3.74) —0.634 (—0.881,-0.437) 0.250 (0.00994,0.892)
Model 1 |T| 1%
no indel model / Clustal ~ 0.244 (0.172,0.359) 11.7 (9.13,14.4) 0.999 (0.750,1.37)
no indel model / Muscle  0.285 (0.193,0.434) 12.9 (10.3,17.9) 1.26 (0.935,1.83)
no rate variation 0.165 (0.124,0.226) 7.57 (6.90,8.28) -
GTR +gwF +log-Normals  0.365 (0.226,0.650) 16.7 (11.4,27.8) 2.20 (1.44, 3.83)
Model #indels lindels| #subst |A]
no indel model / Clustal - — 745 (737,756) 135 —
no indel model / Muscle - - 755 (746, 768) 135 -
no rate variation 58 (49,70) 111 (93,137) 701 (681,719) 166 (155,181)
GTR+gwF+log-Normalg 57 (50, 66) 118 (101, 145) 711 (693, 729) 172 (160, 194)
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Figure 5: Fixed alignment leads to bias towards guide tree. The data set consists of 5S ribosomal RNA
sequences from 25 taxa across the Tree of Life. In both panels (a) and (b) each point represents the support
for a bi-partition when near-optimal alignments are considered using joint Bayesian estimation of phylogeny
and alignments (x-axis) and when the alignment is fixed and indel information is ignored (y-axis). Support
is indicated by the posterior logig odds (PLOD). Filled triangles represent bi-partitions that are implied by
the guide tree used by Clustal W to estimate the fixed alignment; open squares represent bi-partitions that
contradict this guide tree. Note that triangles tend to fall above the line y = x, while open squares tend to
fall below it. This indicates that that under the fixed alignment, partitions have increased support if they
are in the guide tree, and decreased support otherwise. This illustrates bias towards the guide tree of a
progressive alignment estimate when the alignment is fixed. Points in panel (a) represent bi-partitions of the
leaf taxa, but points in panel (b) represent bi-partitions of subsets of the leaf taxa. Because the posterior
topology distribution contains many wandering taxa, bi-partitions of the full leaf taxon set do not reveal the
full amount of information in the distribution.

placed among the Archaea, in accordance with the Clustal W guide tree. In contrast, when the alignment
is allowed to vary during phylogeny estimation, the posterior support for monophyly of the Eubacteria
rises to 0.998, with a posterior LOD score of PLOD=2.74. This indicates that the support for clustering
Campylobacter with the Archaea is an artifact of the Clustal W and Muscle guide trees. This observation
is further evidence for the view that sequential estimation does not yield robust inferences in the presence
of alignment uncertainty.

The bias in phylogeny inference that results from conditioning on an alignment is not limited to the
placement of the single taxon Campylobacter. In Figure 5 we compare the posterior topology distributions
when the alignment is fixed to the Clustal W estimate and when it is allowed to vary. Splits which are
present in the Clustal W guide tree tend to have higher support when the alignment is constructed using
the guide tree. Because some taxa may plausibly attach at several places on the tree under both distributions,
not many full splits are strongly supported (Figure 5a). The exception is that the monophyly of Bacteria
is strongly supported when the alignment is not fixed to the Clustal W estimate. However, many partial
splits do show strong support (Figure 5b), and partial splits that occur in the guide tree tend to be strongly
supported only when the fixed alignment is used that was created using the guide tree.
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7.4 Rate heterogeneity

Substitution rate heterogeneity was strongly supported by the data set and substantially decreases the
amount of posterior alignment uncertainty. To determine whether rate heterogeneity was supported by the
data, we estimated the marginal likelihood of the data set under the GTR+gwF and GTR+gwF-+logNormalg
models using the stabilized harmonic mean estimator (Newton and Raftery, 1994; Suchard et al., 2003). The
marginal likelihood estimates for these two models are —2829.2 + 0.2 and —2739.6 & 0.4 on the log, scale.
Placing equal prior weight on both models yields a log Bayes factor of 89.6 in favor of the model with rate
heterogeneity. The strength of evidence here is surprisingly high, given that the longest sequence length is
only 131 nucleotides. However, this may be explained by the extreme degree of rate heterogeneity since V/
is estimated at 1.93 (1.28,3.24) far from V = 0.

Including rate heterogeneity in the substitution model substantially decreases the degree of alignment
ambiguity in the posterior distribution. This is indicated in comparison of the Au plots of the two models
(not shown) and in Figure 7. Figure 7 shows that the fraction of aligned residues in each pair of sequences
tends to be higher under the GTR+gwF-+log-normalg model than under then GTR+gwF model with no
rate variation. This may be explained by the observation that the first half of the 5S rRNA sequence
exhibits greater conservation than the second half. By allowing different substitution rates in each site, the
GTR+gwF+logNormalg can improve the likelihood by increasing the observed substitutions in this region.
This explanation is with in increased posterior median parsimony score (714 versus 702) under the model
with rate heterogeneity. Since Table 1 indicates that the substitution rate does indeed vary across the
alignment, this trade-off should be biologically realistic and lead to more accurate alignments and trees.

8 Discussion

In this chapter we described how alignment ambiguity can undermine bioinformatic inference methods based
on sequential estimation, preventing the robust inference of phylogenies and other evolutionary parameters
from collections of distantly related sequences. We then described bioinformatic inference methods that make
use of homology information in multiple sequence alignments, and yet are robust to alignment uncertainty.
In doing so, we emphasized that in order to yield robust inferences and accurate measures of confidence,
an inference method must take into account both of the two sources of alignment uncertainty: parameter
uncertainty and near-optimal alignments. We also emphasized the importance of jointly estimating the
alignment and any other parameters that are mutually dependent on the alignment. When the alignment is
ambiguous, joint estimation is necessary in order to prevent circular reasoning. Bayesian inference methods
that fulfill these conditions have long been available for pairwise alignments, but have only recently become
feasible for multiple alignments. In addition to robust inference, these Bayesian methods make it possible to
assess alignment uncertainty in an objective and repeatable fashion, and can safely make use of information
in ambiguous regions of the alignment. Bayesian methods naturally asses fine gradations in support for
homologies, and also allow characterizing support for homology statements that range in size from an entire
alignment to a single pair of residues.

8.1 Speed and Sequential Estimation

Despite the many benefits of the joint estimation approach, consideration of near-optimal alignments during
estimation of other parameters comes at the cost of increased run time when the data set contains multiple
sequences. For example, when the software BA1i-Phy is used, considering near-optimal alignments increases
the computation time for each iteration by about a factor of 2.2 over a standard Bayesian analysis for the
example in Section 7, where the sequence lengths are about 120 letters. For longer sequences of about 500
letters, joint estimation is about 10 times slower than the use of a fixed alignment per iteration. In addition,
more iterations are often required when the alignment is allowed to vary. Therefore, the benefits of increased
power through the use of indel information and the use of substitution information in ambiguous regions
must be balanced against the limited size of data sets that may currently be analyzed in the joint estimation
paradigm. Because of the computational cost we predict that sequential estimation based on the use of a
single censored alignment will continue to be used by commonly biologists for at least a decade, whether
this is advisable or not. Of course, when a rough estimate of the alignment is required for the purpose of
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Figure 6: Majority consensus trees summarize the posterior phylogeny distribution for the 5S rRNA data set
described in Section 7. Partitions with posterior probability greater than 0.5 are displayed in each tree, and
branch lengths are posterior mean branch lengths conditional on the topology shown. (a) The tree on the
left summarizes the posterior distribution when the alignment is fixed to the Clustal W alignment estimate.
(b) The tree on the right summarizes the posterior distribution under the RS07 model when the alignment
is allowed to vary. Note that the taxon Campylobacter is in correctly placed among the Archaea when the
Clustal W is used, in accordance with the Clustal W guide tree. Each taxon is labelled B, A, or E, to
indicate the Bacteria, Archaea, or Eukaryotes.

33



No rate variation

No rate variation

No rate variation

level 0.75 level 0.95 level 0.99
3 2 : = .
¢ .
. . o . : B
@ © .o ) “ . ®
3 3 . ‘:;»“, ’ex 3 M Rk
. .o’,oo et KU A0
oo \”’ ose® ‘é « o o
® @ o © . ’.s s 5 © - cee 3 4
sz o© o Z © tenn” M s o A
£ . £ . "3’, *% £ . K §
s . 5 oty 0" . 5] e scem
2 2 R PSS 2 P
T I % ot T ~
o > < . % T % > LY ¥ "N
S o S o “e o S o & HOE
e 4 o _.o.
- My 4
g S g o
. e
S} . S} . S} .
T T T T T T T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(a) Alignment uncertainty with and without rate variation

Figure 7: Modelling site-to-site variation in substitution rate leads to decreased alignment ambiguity. Each
point represents a pair of sequences. Both axes represent the fraction of residues in the shorter sequence
that are aligned to a gap or specific residue in the other sequence with a posterior probability greater than
the cutoff value. The horizontal axis represents the aligned fraction under the GTR+gwF model, and the
vertical axis represents the aligned fraction under the GTR+4gwF+log-normalg model. In each plot the
aligned fraction is substantially greater under the model with rate heterogeneity; this trend increases as the
threshold level of posterior probability increases. Additionally, the separate plots illustrate the fact that as
the threshold increases, fewer residues in each pair are aligned with the required posterior probability.

visualization, speed will always be the predominant concern. In these cases progressive alignment and other
heuristic techniques may be preferred indefinitely. However, it is still important in such cases to indicate
when the alignment should be trusted and when it might be unreliable. It is therefore worth considering
how much the speed of joint estimation might be increased, and what improvements in robustness might be
made for methods that attempt to handle alignment uncertainty through censoring.

8.1.1 Speeding up joint estimation of alignment and other parameters

Joint Bayesian estimation requires additional computation time compared to traditional Bayesian analysis
for two primary reasons: first, because the alignment must continually be resampled and, second, because
the Markov chain requires more iterations to give equally precise estimates. The time required for resampling
using DP is linear in the number of genes used, but is quadratic in the length of each gene. Therefore, just as
in other applications of DP, the cost of resampling the alignment can be decreased by ignoring the corners of
the DP matrix or by constraining the alignment to contain specific homologies that are considered certain.
The second cause for slowness can be improved by new transition kernels that increase mixing efficiency, but
it is difficult to characterize how much mixing efficiency is decreased by allowing the alignment to vary.

A number of factors may combine to make joint Bayesian estimation quicker in several common cases.
First, note that if a rough estimate of the alignment without measures of confidence is all that is needed,
then the MCMC analysis may require many fewer iterations, since the analysis can be stopped when burn-in
is reached. For example, we estimate that the analysis in section 7 would require only about an hour or two
to produce an estimate, instead of about two weeks to produce detailed measures of confidence as well. This
amount of time may be further decreased by using a starting tree and alignment that are computed from a
quicker method. However, one problem with stopping directly after burn-in is complete is that it is difficult
to know the burn-in time without running a longer analysis.

Secondly, in many cases the branching order of the taxa in the data set is already known. In such cases,
the use of a fixed topology should greatly decrease the number of iterations required for convergence of
the Markov chain, as well as decreasing the number of samples that need to be collected after convergence.
Furthermore, in many such cases each gene may be analyzed independently in order to infer substitution
rates, insertion and deletion rates, the degree of positive selection, or other parameters. In this case, a large
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computing cluster should enable whole-genome analysis of coding regions.

8.1.2 Improvements to traditional alignment methods

Several new consistency-based methods for multiple sequence alignment hold out the possibility of improving
the accuracy of multiple sequence alignments when evolutionary parameters are not known in advance. For
example, the ProbCons (Do et al., 2005) approach mitigates the bias induced by the use of a guide tree through
iterative refinement and the 3-way consistency transformation, while sequence annealing as implemented in
AMAP (Schwartz and Pachter, 2007) does not rely on progressive alignment and so does not need a guide
tree. While these methods can be slower than Clustal W, they are still quite fast.

Many of these methods additionally compute some measure of reliability for homologies in a multiple
alignment. For example, ProbCons provides a column reliability score based on posterior probabilities, as
do several other consistency-based methods. The program AMAP takes a different approach, and provides a
series of alignments at various levels of specificity. However, this specificity applies only to homologies, and
not to gaps. Thus AMAP leaves more residues unaligned which increased reliability is required.

8.2 Testing Alignment Reliability Measures

Alignment estimation methods are often ranked by the number of correctly predicted homologous pairs
or columns as measured against curated alignment databases such as BAliBase (Thompson et al., 1999).
However, even if an alignment method correctly predicts 40% of aligned residues, this degree of accuracy
may not be very useful unless the program also indicates which residues in the alignment estimate are correct
aligned. In addition to statistical alignment programs, which indicate confidence in alignment regions using
posterior probabilities, a number of other programs, such as T-Coffee (Notredame et al., 2000), ProbCons,
and AMAP also provide estimates of reliability. Thus, in order to improve or rank these approaches, improved
alignment benchmarks that compare sensitivity at each level of specificity are needed.

8.3 Verifying Bioinformatic inferences by simulation

When developing new bioinformatic inference methods, researchers are hampered by the fact that the accu-
racy of such methods is often difficult to check. This is because phylogenies and many other evolutionary
parameters cannot be directly measured. One way around this problem is to simulate a collection of se-
quences conditional on a specific set of evolutionary parameters so that the true values for the parameters
are known (Ogden and Rosenberg, 2006). However, this approach does have a few difficulties. First, it is
important that conclusions and generalizations about the accuracy of a method as a whole are carefully
based on results for a large collection of different parameter settings. Second, inference methods that are
based on a specific evolutionary model often perform well on data sets simulated from that model, but may
perform worse on real data if the model is inaccurate. Inaccuracies on real data often stem from the fact that
inference under a model that captures all relevant biological phenomena is computationally prohibitive. For
example, all current alignment algorithms fail to account for slipped-strand mispairing that causes insertions
and deletions of tandem repeats.

However, it is often computationally feasible to simulate under biologically realistic models that contain
complex phenomena, even when it is not feasible to use such models for inference. By using data simulated
from biologically realistic models, it should be possible to conduct more tests of bioinformatic inference
methods whose results can be extrapolated to real data with greater confidence. In addition, it would be
possible to ascertain which aspects of the more complex simulation model must be included in the inference
model to improve accuracy. Thus, we believe that the development of more complex and realistic models of
sequence evolution would well repay any effort that is put in to developing them. Models for simulation would
ideally include both substitution and indel rate heterogeneity, and this heterogeneity would have biologically
realistic spatial patterns, perhaps based on structures of known proteins.
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