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Abstract

Current estimates of diversifying positive selection rely on first
having an accurate multiple sequence alignment. Simulation
studies have shown that under biologically plausible condi-
tions, relying on a single estimate of the alignment from com-
monly used alignment software can lead to unacceptably high
false positive rates in detecting diversifying positive selection.
We present a novel statistical method that eliminates excess
false positives resulting from alignment error by jointly es-
timating the degree of positive selection and the alignment
under an evolutionary model. Our model treats both sub-
stitutions and insertions/deletions as sequence changes on a
tree, and allows site-heterogeneity in the substitution process.
We conduct inference starting from unaligned sequence data
by integrating over all alignments. This approach naturally
accounts for ambiguous alignments without requiring ambigu-
ously aligned sites to be identified and removed prior to anal-
ysis. We take a Bayesian approach and conduct inference us-
ing MCMC to integrate over all alignments on a fixed evo-
lutionary tree topology. We introduce a Bayesian version of
the branch-site test and assess the evidence for positive selec-
tion using Bayes factors. We compare two models of differing
dimensionality using a simple alternative to reversible-jump
methods. We also describe a more accurate method of esti-
mating the Bayes factor using Rao-Blackwellization. We then
show using simulated data that jointly estimating the align-
ment and the presence of positive selection solves the problem
with excessive false positives from erroneous alignments, and
has nearly the same power to detect positive selection as when
the true alignment is known. We also show that samples taken
from the posterior alignment distribution using the software
BAli-Phy have substantially lower alignment error compared
to MUSCLE, MAFFT, PRANK, and FSA alignments.

Keywords: Sequence alignment, Bayes factor, positive selec-
tion, false positive rate, insertion/deletion, codon models

Introduction

Phylogenetic methods are an essential tool for inferring
biological properties of nucleotide sites using evolution-
ary models. Phylogenetic methods make use of homol-
ogous sequence data from multiple species to infer site
properties from the patterns of nucleotide differences be-
tween species. Such properties may include the presence
or absence of functional constraint (Siepel et al., 2005),
the presence of diversifying positive selection (Muse and
Gaut, 1994; Goldman and Yang, 1994), and the ability
of DNA sites to bind particular proteins (Sinha et al.,
2004). All phylogenetic methods for inferring site prop-
erties share in common the reliance on a phylogenetic tree
(known or estimated) and a multiple sequence alignment.
The multiple sequence alignment is essential for inferring
site properties because it specifies which nucleotides from
different sequences are homologous, and therefore what
counts as a “site”. Current methods for inferring site
properties rely on a previously computed estimate of the

alignment. Errors in the alignment may therefore lead
to the estimation of spurious properties for sites that are
incorrectly aligned, and for the sequence as a whole.

Alignment error is especially problematic when esti-
mating diversifying positive selection, since aligning non-
homologous residues is likely to imply a spurious non-
synonymous substitution, which will be interpreted as
evidence for positive selection. Alignment errors, to-
gether with sequencing errors and the inclusion of non-
homologous genes and exons, substantially raise the fre-
quency of erroneously detecting positive selection. Align-
ment errors have therefore limited the utility of phylo-
genetic site-annotation methods in practice (Schneider
et al., 2009; Villanueva-Cañas et al., 2013). For ex-
ample, in whole-genome comparative analyses of yeast
(Wong et al., 2008) and of Drosophila (Markova-Raina
and Petrov, 2011) the choice of alignment program had
a large effect on which genes were identified as expe-
riencing positive selection. Furthermore, the majority
of positives in these whole-genome studies were actually
false positives arising from misaligned codons. Simula-
tion studies show that errors in estimated multiple se-
quence alignments can lead to substantially inflated false
positive rates in inferring positive selection (Fletcher and
Yang, 2010), even in methods that have quite conservative
false-positive rates when the true alignment is known.

In order to mitigate this problem, researchers have
searched for alignment methods with the lowest error
rates in detecting positive selection (Jordan and Gold-
man, 2012; Privman et al., 2012). These studies found
PRANK (Löytynoja and Goldman, 2005) alignments to be
superior to alignments from MUSCLE (Edgar, 2004) and
MAFFT (Katoh et al., 2002; Katoh and Standley, 2013),
both of which were superior to ClustalW. Researchers
have also developed a wide variety of methods for de-
tecting and removing unreliable regions from alignment
estimates in order to decrease downstream false-positive
rates. For example, GBLOCKS censors columns that are
highly variable or near a gap (Castresana, 2000). SOAP

determines reliability based on sensitivity to gap cost pa-
rameters (Löytynoja and Milinkovitch, 2001). ALISCORE

compares the best alignment of letters within a window
to the best alignment when those letters are randomly re-
ordered (Misof and Misof, 2009). GUIDANCE (Penn et al.,
2010a,b) measures sensitivity to the guide tree used in
progressive alignment. HoT looks for differences between
co-optimal alignments (Landan and Graur, 2008). Cen-
soring methods such as these are able to improve the ac-
curacy of site-wise detection of positive selection for less
accurate alignment methods, but have a much smaller ef-
fect on more accurate methods such as PRANK (Jordan
and Goldman, 2012; Privman et al., 2012).

More recently, researchers have adjusted likelihood ra-
tio tests for positive selection by replacing likelihoods
based on a single alignment with a likelihood averaged
across a number of alignments taken from MCMC soft-
ware such as BAli-Phy (Blackburne and Whelan, 2013).
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Tab. 1: The M2a model for site-dependent ω.

Class 1 Class 2 Class3

ω 0 ≤ ω0 ≤ 1 ω1 = 1 ω2 ≥ 1
Frequency p0 p1 1− p0 − p1

These results suggest that a single posterior sample from
BAli-Phy under the M0/RS07 model leads to nearly the
same true positive and false positive rates as a single
alignment from PRANK. However, the use of averaged like-
lihoods leads to a slight but measurable improvement in
both the true positive and false positive rates.

Diversifying positive selection and the
branch-site model

Diversifying positive selection is a property of codons, not
of individual nucleotides. We therefore choose to focus on
codon sites instead of nucleotide sites. The simplest way
to explain diversifying positive selection is to write down
the expression for the rate of substitution from one codon
state to another, following the Goldman and Yang (1994,
GY94) model. The GY94 model requires that codons
may only change one nucleotide at a time. Subject to
that constraint, the rate of substitution from one codon
i to another codon j is given as

Qi→j = πj ×
{

1 if transversion
κ if transition

}

×
{

1 if synonymous
ω if non-synonymous

}

,

where πj is the equilibrium frequency of codon j. Thus,
the non-synonymous/synonymous (dN/dS) rate ratio ω
represents an increased or decreased rate of change for nu-
cleotide substitutions that result in amino acid changes,
relative to what would be expected for neutral evolution.
Thus if ω = 1, we describe the process as neutral. If ω < 1
we say that the codon is conserved and is undergoing neg-
ative selection. If ω > 1 then we say that the codon is
undergoing diversifying positive selection. Note that di-
versifying positive selection is therefore a preference for
amino acid change per se.

In order to use such models to assign properties to in-
dividual codon sites in a gene, Nielsen and Yang (1998)
introduced models in which different codon sites may
choose from a fixed collection of ω values. These ω val-
ues, and the fraction of sites that evolve according to each
one, are themselves unknown parameters to be estimated
from data. Thus, for example, in the M2a model (Wong
et al., 2004), some fraction p0 of sites have ω = ω0 ≤ 1,
some fraction p1 have ω = 1, and the remainder have
ω = ω2 ≥ 1. One can obtain a model without positive se-
lection by constraining ω2 = 1 and 1−p0−p1 = 0, and this
leads to a likelihood ratio test (LRT) for positive selection
(Nielsen and Yang, 1998). This test assesses the evidence
that there are any sites that are positively selected, and

Tab. 2: The branch-site model for branch- and site-
dependent ω.

Class 1 Class 2 Class 3 Class 4

background ω0 1 ω0 1
foreground ω0 1 ω2 ω2

Frequency p0 p1 p2a p2b

thus does not require the external correction for multiple
testing that would be needed if each site were tested sep-
arately. (Wong et al., 2004). However, note that if we
mistakenly align two separate sub-columns into a single
(incorrect) column, then we may create a spurious non-
synonymous substitution. Since even a single column un-
dergoing positive selection is considered a rejection of the
null hypothesis of no positive selection, it is possible that
this test may be sensitive to alignment error.

Zhang et al. (2005) describe an extension of this model
that allows positive selection to be both site-specific and
branch-specific. The tree topology is fixed and assumed
to be known a priori, as are the branches on which pos-
itive selection might occur. These branches are labeled
“foreground” branches, while the remainder are labeled
“background” branches. In this “branch-site” model, the
ω for a site may switch to ω2 ≥ 1 on the foreground
branches, which remain either ω0 ≤ 1 or ω1 = 1 on all
background branches. Some fraction of sites p2 undergo
this switch, and that fraction is chosen independently of
the ω value for the background branches. Zhang et al.
(2005) suggest constructing a LRT by comparing this
model with a null model where ω2 is constrained to 1.
This null model is preferred over the null model where
1 − p0 − p1 is constrained to be 0, since it allows ω to
change to 1 on the foreground branches even when there
is no positive selection. This avoids treating relaxation of
selective constraints as positive selection and avoids false
positives when the data do not follow the simple model
used in inference (Zhang, 2004).

Positive selection and alignment uncertainty

Fletcher and Yang (2010) showed that on data sets sim-
ulated under a variety of evolutionary scenarios contain-
ing insertions and deletions, alignment errors can lead to
false positive rates for the branch-site test that are sub-
stantially higher than 0.05. Following Zhang et al. (2005)
and Zhang (2004), Fletcher and Yang used a simulation
model that allowed columns to select from a variety of
different neutral or conservative ω values on background
branches. It also allowed positive selection on the fore-
ground branch to be strongly correlated with the ω value
on background branches. Fletcher and Yang also system-
atically varied the location of the foreground branch, the
tree shape, and the distribution of ω values on the fore-
ground branch.

Despite the fact that these simulation models contra-
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Tab. 3: Site categories and their ω values under different
selection schemes.

Scheme
Site Class X U

1 1.0 1.0
2 1.0 1.0
3 0.8 4.0
4 0.8 0.8
5 0.5 2.0
6 0.5 0.5
7 0.2 0.2
8 0.2 0.2
9 0.0 0.0
10 0.0 0.0

dict the assumptions of the branch-site model used for
inference, Fletcher and Yang (2010) found no evidence
of excessive false positives when the true alignment was
used. In contrast, when estimated alignments were used,
the false positive rates depended strongly on the evo-
lutionary scenario that was simulated and on the soft-
ware program used to reconstruct the alignment. Under
some evolutionary scenarios, the use of alignments from
ClustalW led to false positive rates as high as 0.99. Other
alignment software performed better, with PRANK codon-
based alignments having the lowest false positive rates.
Nevertheless, PRANK alignments had false positive rates
as high as 0.13 under some evolutionary scenarios, sub-
stantially exceeding the desired level of 0.05.

Joint estimation

Integrating over all alignments under an evolutionary
model is a more natural approach to estimation under
alignment uncertainty (Thorne and Kishino, 1992; Alli-
son and Wallace, 1994). Instead of censoring parts of
the alignment that are difficult to align, multiple alterna-
tive alignments are considered with an appropriate weight
that depends on the data and the evolutionary model.
This approach is a more natural evolutionary approach
to the problem of alignment uncertainty because it treats
insertions and deletions as mutations occurring on par-
ticular branches of a phylogenetic tree, instead of merely
gaps in a matrix. Alignment estimation therefore benefits
from the use of an evolutionary model that includes the
phylogeny, and thus should achieve greater accuracy than
heuristic alignment programs that do not have access to
the evolutionary tree (Löytynoja and Goldman, 2005).

Integrating over all alignments is statistically more nat-
ural because it conducts inference starting from the ob-
served data, which are unaligned sequences. A multiple
sequence alignment estimate Â is not observed, and so
is not considered data. This affects the likelihood, since
the likelihood is defined to be proportional to the proba-
bility of the data, given hypothesis H and parameters Θ.

The likelihood does not condition on Â, since Â is not a
model parameter.

Pr(unaligned data|H,Θ) 6= Pr(unaligned data|H,Θ, Â).

Instead, the likelihood integrates over the alignment A,
since A is a latent variable:

Pr(unaligned data|H,Θ) =
∑

A

Pr(unaligned data,A|H,Θ).

Support for positive selection might then be phrased in
terms of a ratio of marginal likelihoods, or Bayes factor:

BF10 =

∑

A Pr(unaligned data,A|H = 1)
∑

A Pr(unaligned data,A|H = 0)
.

Here H = 0 indicates that the null model (H0, no pos-
itive selection) is true, while H = 1 indicates that the
alternative model (H1, with positive selection) is true. In
order to perform model selection between the H0 and H1

models, we can incorporate both of these models into a
larger probability expression:

Pr(unaligned data, A,Θ, H).

We can then perform MCMC to estimate the posterior
probability that H = 1, which we can use to compute the
Bayes factor.

Incorporating alignment estimation inside the test in
this way allows joint estimation of the alignment and the
presence of positive selection. This is important because
it allows each of H0 and H1 to be evaluated in the context
of alignments that are adapted to that model, instead of
evaluating both models on a common alignment estimate
Â. In such an approach, not only does the alignment in-
fluence estimates of positive selection, but the two models
of selection (with and without positive selection) also in-
fluence the alignment. We note that the ratio of marginal
likelihoods could in theory be replaced with a ratio of
maximum likelihoods in order to allow the construction
of a LRT that incorporates alignment uncertainty.

Instead of censoring an alignment estimate to remove
ambiguous regions, we therefore propose to remove excess
false positives by jointly estimating the alignment and the
presence of positive selection. We do this by integrating
over near-optimal alignments inside the test for positive
selection. We introduce a Bayesian version of the branch-
site test recommended by Zhang et al. (2005). The com-
bination of the H0 and H1 substitution models can be
referred to as the branch-site testing (BST) model. We
then extend the software program BAli-Phy (Redelings
and Suchard, 2005) to perform this test while integrat-
ing over all alignments under the RS07 insertion deletion
model (Redelings and Suchard, 2007). The full model
may then be referred to as the BST/RS07 model. This
approach allows alignment estimation to achieve greater
accuracy by allowing site-dependent conservation hetero-
geneity for both the H0 and H1 substitution models. The
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approach incorporates multiple different sources of align-
ment uncertainty, including alignment uncertainty due to
uncertainty in insertion/deletion parameter values, and
alignment uncertainty due to near-optimal alignments.

Bayesian model selection

We perform model selection in the Bayesian framework
based on the Bayes factor (Jeffreys, 1998; Suchard et al.,
2001). The Bayes factor for a model is an odds ratio
that quantifies the strength of evidence for (or against)
that model in terms of the relative fit of the data to each
model. Bayes factors above 20:1 are often considered
“strong” support, while Bayes factors above 3:1 but less
than 20:1 are considered “positive” support, and Bayes
factors less than 3 are “not worth more than a bare men-
tion” (Kass and Raftery, 1995). We compute BF10, which
is the Bayes factor in favor of H1 against H0, and thus
quantifies the evidence in favor of positive selection.

In order to compute Bayes factors, we must supply
prior distributions on unknown variables in the model.
There is no explicit penalty for higher-dimensional models
in the Bayesian framework. Instead, higher-dimensional
models suffer an implicit penalty when the prior distribu-
tion on the additional dimensions does not focus all of its
mass on the value that happens to have the highest like-
lihood. The most influential prior distributions for the
branch-site model are the prior distribution on p2, and
the prior distribution on ω2. These priors play a crucial
role in defining H1 because they determine what fraction
p2 of sites display positive selection under H1, as well as
the strength ω2 of positive selection. Other prior distribu-
tions are less influential because they are shared by both
H0 and H1 and are likely to affect both models equally.

While Bayes factors can be computed without specify-
ing the prior probability that H = 0 and H = 1, poste-
rior probabilities (PP) cannot. We choose to set the prior
probability of H0 and H1 to 0.5. This prior distribution
on H treats both models equally a priori, and corresponds
to the assumption that 50% of genes experience positive
selection and 50% do not. When we compute the false
discovery rate (FDR), we also make the assumption that
the ratio of genes with and without positive selection is
1:1, and refer to the result as FDR1:1. In this “equipoise”
scenario, the Bayes factor equals the posterior odds. Pos-
terior probabilities > 0.952 then correspond to a Bayes
factor >20:1, whereas posterior probabilities >0.75 cor-
respond to a Bayes factor >3:1.

In the rest of this paper, we first describe how to es-
timate the Bayes factor with sufficient accuracy. We
then simulate data according to a scenario examined by
Fletcher and Yang (2010) and proceed to test the ac-
curacy of joint estimation of alignment and positive se-
lection. We compare the FPR, TPR, and FDR of joint
inference with inference based on the known true align-
ment, and with inference based on the use of a single fixed
alignment estimate from MUSCLE, PRANK, FSA, or MAFFT.

We compare the FPR, TPR and FDR of the traditional
branch-site LRT and the Bayesian version of the branch-
site test. We also compare the accuracy of alignments
from MUSCLE, PRANK, FSA, and MAFFT to alignments sam-
pled from the posterior alignment distribution under the
BST/RS07 model using BAli-Phy.

Results

Improved estimator for the posterior odds
of positive selection

As described above, we introduce a variable H to indi-
cate which model is in effect. When H = 1 the like-
lihood is computed under the positive selection model,
and when H = 0 the likelihood is computed under the
model without positive selection. Under this scheme, the
probability of positive selection is Pr(H1|data) = Pr(H =
1|data), and the probability of no positive selection is
Pr(H0|data) = Pr(H = 0|data).

At each iteration of the Markov chain a new value of
H is sampled, since H is part of the state of the Markov
chain. Let us define hj to be the value of H sampled at
the jth iteration of the Markov chain. Here hj will be 0 or
1. The usual way of estimating Pr(H = 1|data) from N
MCMC samples would simply be to compute the fraction
of samples in which H = 1:

Pr(H = 1|data) ≈ 1

N

N
∑

j=1

1{hj=1}. (1)

Here we use the mathematical notation 1{·}, which is de-
fined to be 1 if the condition {·} is true, and 0 otherwise.
This method of estimating Pr(H = 1|data) does not work
very well if the probability is near 1 or 0. Suppose we
have N = 100 samples. In that case it is not possible
to obtain a probability between 99/100 and 100/100. Al-
though these two posterior probabilities may seem sim-
ilar, they lead to the very different odds ratios of 99/1
and 100/0 = ∞. The posterior odds is closely related to
the Bayes factor, and thus to the strength of evidence for
positive selection. We seek an estimator for the posterior
odds that can attain values between N−1 and ∞. This is
necessary in order to compute high posterior odds with-
out obtaining an enormous number of samples from the
Markov chain.

Our strategy for obtaining improved estimates of
Pr(H = 1|data) is to record at each iteration not just
the value of H, but also the expected value of H given
all other variables in the Markov chain. To show that the
expected value can be used to construct a valid estimator
for Pr(H = 1|data), we define X to refer to all variables
in the Markov chain except H. We note that

Pr(H = 1|data) = E
(

1{H=1}

∣

∣

∣
data

)

= E
[

E
(

1{H=1}

∣

∣

∣
X
) ∣

∣

∣
data

]
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= E
[

Pr
(

H = 1
∣

∣

∣
X
) ∣

∣

∣
data

]

,

where the inner expectation is over H and the outer ex-
pectation is over X. Now let xj be the value of X sampled
at the jth iteration of the Markov chain. Then the ap-
proximation

Pr(H = 1|data) = E
[

Pr
(

H = 1
∣

∣

∣
X
)
∣

∣

∣
data

]

≈ 1

N

N
∑

j=1

Pr
(

H = 1
∣

∣

∣
X = xj , data

)

(2)

allows us to approximate Pr(H = 1|data) by averag-

ing over the value of Pr
(

H = 1
∣

∣

∣
X = xj , data

)

that is

recorded at each iteration.
In order to compute Pr

(

H = 1
∣

∣

∣
X = xj , data

)

, we

modify the software to compute Pr(H = 0, X = xj , data)
and Pr(H = 1, X = xj , data) at each iteration without
changing hj . Then

Pr
(

H = 1
∣

∣

∣
X = xj , data

)

=
Pr(H = 1, X = xj , data)

Pr(X = xj , data)

=
Pr(H = 1, X = xj , data)

Pr(H = 0, X = xj , data) + Pr(H = 1, X = xj , data)
.

Taking the conditional expectation of an estimator to ob-
tain an improved estimator, as we have done here, is
sometimes called Rao-Blackwellization because a similar
process is described in the Rao-Blackwell theorem (Black-
well, 1947). This theorem also guarantees that the new
estimator (Eq. 2) has a variance that is at least as small
as the variance of the old estimator (Eq. 1) and is fre-
quently smaller. We note that the new estimator allows
estimates of posterior odds between N − 1 and ∞.

How PPs change with different alignments

After simulating 1000 data sets with diversifying posi-
tive selection throughout the entire gene region (FY+)
and 1000 data sets without positive selection (FY-), we
performed the Bayesian version of the branch-site test
on each data set using a variety of alignment methods.
The effect of alignment error on the PP of positive selec-
tion can be illustrated by plotting the PP given the true
alignment against the PP for various alignment estima-
tion methods (fig. 1). In such a plot, each point repre-
sents a simulated data set. These plots show that when
MUSCLE or MAFFT alignments are used, the PP of positive
selection is increased for nearly all data sets, and the in-
crease is frequently large. When FSA or PRANK alignments
are used, for many data sets the PP is similar to the PP
from the true alignments. However, when the PP is dif-
ferent, it is usually an increase and the increases may be
small or large. FSA seems to experience larger increases
of PP than PRANK. In contrast, when jointly estimating
alignments, decreases in PP seem to be as frequent as in-
creases, and the magnitudes are not large. When fixing a

single alignment sampled from the posterior distribution
of the co-estimation analysis, PPs are nearly as accurate
as when performing a full co-estimation analysis, at least
under these simulation conditions. We further illustrate
the effect of alignment error on PPs by plotting the distri-
bution of PPs across data sets for each alignment method
(Fig. 2). For MUSCLE, MAFFT, FSA, and PRANK alignments,
posterior probabilities are shifted toward 1.0. However,
PPs under joint estimation have nearly the same distri-
bution as when the true alignment is known.

We calculate the squared correlation across data sets
of PP for estimated alignments versus PP for true align-
ments. For data sets simulated under the FY- model
without positive selection, the squared correlation co-
efficient is 0.088 for MUSCLE, 0.080 for MAFFT, 0.17 for
FSA, 0.26 for PRANK, 0.66 when fixing a posterior sampled
alignment, and 0.79 when co- estimating the alignment.
Squared correlations on data sets simulated under the
FY+ model with positive selection are 0.10 for MUSCLE,
0.15 for MAFFT, 0.37 for FSA, 0.49 for PRANK, 0.75 when
fixing a posterior sampled alignment, and 0.85 for jointly
estimating alignments.

Discriminating between data sets with and
without positive selection

In order to assess the ability of different methods to dis-
criminate between data sets with and without positive se-
lection, we compute ROC curves for Bayesian inference of
positive selection using different alignment methods (fig.
3). ROC curves allow comparison of different methods at
the same level of FPR, even if those methods achieve dif-
ferent FPR values in practice. Depending on the method,
the alignment was either co-estimated (Joint As) under
the BST/RS07 model or fixed to an externally supplied
alignment estimate. We supplied external estimates from
the alignment reconstruction programs MUSCLE, MAFFT,

FSA, and PRANK. We additionally supplied the known
true alignment (True A), and a single fixed alignment
(Joint A) sampled from the posterior distribution of the
co-estimation analysis. The TPR and FPR were com-
puted based on the FY+ and FY- data sets, respectively
(table 4). At a FPR of 5%, Bayesian inference based on
fixing the true alignment attains a TPR of 30% (True A).
Jointly estimating the alignment yields a TPR of 27%
(Joint As), while fixing a posterior sampled alignment
yields a power of 25% (Joint A). In contrast, condition-
ing on alignments estimated by PRANK, FSA, MUSCLE,

or MAFFT leads to a TPR of 15%, 15%, 11%, and 9%,
respectively.

Joint estimation avoids inflated FPRs

Joint estimation eliminated excess FPRs for the Bayesian
tests. However, the use of estimated alignments lead to
inflated FPR values (table 4). For the ’True A’, ’Joint
As’, and ’Joint A’ analyses, Bayesian tests based on the
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(a) No positive selection
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(b) Positive selection

Fig. 1: The PP of positive selection given the true alignment (x-axis) versus the PP under various alignment es-
timation methods (y-axis). Plots are based on data sets simulated with positive selection (bottom row) or
without positive selection (top row). Points falling above the black dotted line indicate excess confidence of
positive selection because the alignment is not known a priori. PPs on the y-axis are based on alignments
estimated using MUSCLE, MAFFT, FSA, PRANK, a sampled alignment (Joint A), or joint estimation averaging
over alignments (Joint As) , as indicated.

BF>3:1 and BF>20:1 criterion all yielded a FPR of <1%.
Under the BF>3:1 criterion, estimating alignments with
PRANK, FSA, MAFFT, or MUSCLE lead to FPRs of 6%,
13%, 43%, and 52% respectively. Under the BF>20:1
criterion, estimating alignments lead to FPRs of <1%,
3%, 21%, and 27% respectively.

Performance of the LRT and Bayesian
branch-site tests

The Bayesian tests and the branch-site LRT have simi-
lar trade-offs between FPR and TPR on the FY, BS1,
and BS2 simulated data sets as illustrated by their ROC
curves (fig. 4). For comparisons between the Bayesian
and LRT approaches we assume that the true alignment
is known in order to focus on the difference in approach.
The BS1 conditions yield little power to detect positive
selection, the BS2 simulation conditions lead to higher
power, and the FY simulation conditions are intermedi-
ate. The FY and BS1 data sets lead to nearly identical
ROC curves for the Bayesian and LRT approaches. How-
ever, on the BS2 data set Bayesian inference leads to a
ROC that clearly dominates the LRT curve. For exam-

ple, at an FPR of 5%, the LRT has a TPR of 59% while
Bayesian inference has a TPR of 76%.

Although the ROC curves for the LRT and Bayesian
tests are similar, the Bayesian tests tend to select more
conservative points on these curves that have lower FPR,
TPR, and FDR (table 5). For example, on the FY data
set, the standard branch-site LRT based on the conser-
vative χ2

1 distribution has a 1% FPR, a 13% TPR, and
a 8% FDR1:1. (For comparison, use of the true asymp-
totic distribution 1

2χ
2
0 +

1
2χ

2
1 would lead to a 2% FPR, a

20% TPR, and a 10% FDR1:1.) In contrast, use of the
BF>3:1 criterion for the Bayesian test leads to an FPR
of <1%, a TPR of 7%, and an FDR1:1 of 3%, while the
use of the BF>20:1 criterion leads to an FPR of <1%, a
TPR of <1%, and an FDR that is unknown because the
FPR and TPR are too small.

Since the FY simulation conditions violate the assump-
tions of the branch-site model, we also examined per-
formance under the BS1 and BS2 simulation conditions
which do not violate the assumptions. For the BS1 data
sets, the branch-site LRT achieves a 2% FPR, a 3%
TPR, and a 36% FDR1:1. The BF>3:1 criterion for the
Bayesian test attains an FPR <1%, a 3% TPR, and a 31%
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Fig. 2: Distributions of the PP of positive selection across data sets simulated with positive selection (bottom row)
or without positive selection (top row). The x-axis in each cell ranges from 0 to 1, while the y-axis indicates
probability density. The solid black curve in each panel represents the distribution of PPs based on the true
alignment. The other curve represents the distribution of PPs based on alignments estimated using MUSCLE,
MAFFT, FSA, PRANK, a sampled alignment (Joint A) , or joint estimation averaging over alignments (Joint As),
as indicated.

FDR, while the BF>20:1 criterion attains an FPR and
TPR that are both <1% and an unknown FDR. On the
BS2 data sets, the branch-site LRT achieves an 4% FPR,
a 53% TPR, and 6% FDR1:1. Bayesian inference under
a BF>3:1 criterion attains a 9% FPR, an 84% TPR, and
a 10% FDR1:1; under the BF>20:1 criterion it attains a
<1% FPR, a 43% TPR, and a <1% FDR1:1.

Measuring alignment error

Sampling from the posterior alignment distribution under
the BST/RS07 model yields alignments with less pair-
wise alignment error than alignments taken from MUSCLE,
MAFFT, FSA, or PRANK. We examined the relationship of
pairwise alignment error versus the evolutionary distance
for each alignment method. Each multiple alignment con-
tains a large number of pairwise alignments, because it
implies a pairwise alignment between each pair of se-
quences at the tips of the tree. The evolutionary distance
between tips in the tree in figure 7 can only be 0.2, 0.4,
0.6, or 0.8. Figure 5 plots the pairwise alignment error
versus evolutionary distance for alignments estimated us-
ing MUSCLE, MAFFT, FSA, PRANK (dna), PRANK (aa), PRANK
(codon), and by sampling an alignment from the poste-
rior alignment distribution (Joint A). The pairwise align-
ment error appears to be approximately linear as a func-

tion of evolutionary distance between the two sequences,
and so we report alignment error at an evolutionary dis-
tance of 0.8 as a representative measurement. MUSCLE has
the highest amount of alignment error of the methods we
tested, with an average alignment error of 0.178. MAFFT

is similar, with an alignment error of 0.143. FSA has an
alignment error of 0.103. The PRANK variants all perform
similarly, with an average alignment error of 0.077 (dna),
0.086 (codon), and 0.098 (aa). Sampling from the poste-
rior alignment distribution yields the smallest error, with
an average alignment error of 0.042.

We also explored the differences in alignments pro-
duced by different alignment methods by measuring the
tendency of each method to produce alignments longer
or shorter than the known true alignments in the FY-
data sets. Figure 6 shows the joint distribution of the
true alignment length and estimated alignment length
for MUSCLE, MAFFT, FSA, PRANK, and alignments sam-
pled from the posterior alignment distribution under the
BST/RS07 model. We also computed the median differ-
ence for each method between the estimated alignment
length and the true alignment length. A score of 0 would
indicate that the method is just as likely to overestimate
the length as to underestimate it. MUSCLE, MAFFT, and
FSA, tend to underestimate the true alignment length,
with median differences of −49, −39, and −30 codons re-
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Tab. 4: Performance of Bayesian tests under different alignment estimates

True A Joint As Joint A PRANK FSA MAFFT MUSCLE

FPR=5%
FPR 5% 5% 5% 5% 5% 5% 5%
TPR 30% 27% 25% 15% 15% 11% 9%

FDR1:1 15% 16% 17% 25% 25% 31% 35%

FPR=1%
FPR 1% 1% 1% 1% 1% 1% 1%
TPR 14% 13% 11% 7% 4% 3% 2%

FDR1:1 7% 9% 9% 12% 20% 29% 38%

BF>3:1
FPR <1% <1% <1% 6% 13% 43% 52%
TPR 7% 6% 7% 18% 31% 63% 70%

FDR1:1 3% 6% 7% 24% 29% 41% 42%

BF>20:1
FPR <1% <1% <1% <1% 3% 21% 27%
TPR <1% <1% <1% 4% 10% 38% 42%

FDR1:1 ? ? ? ? 26% 36% 40%

spectively. Differences for PRANK alignments and poste-
rior sampled alignments were +16, and +1 codon, respec-
tively. Thus alignments sampled under the BST/RS07
model are nearly unbiased, while other methods tend to
be biased upward or downward. To provide a scale, the
median length of true alignments was 434 codons. We also
note that, under the BST/RS07 model, the 95% credible
interval for alignment length has a mean width of 11.1
codons across data sets, while the 50% credible interval
has a mean width of 4.75 codons. Thus, uncertainty in
alignment length under the BST/RS07 model is smaller
than the biases of other reconstruction methods.

Discussion

Our study indicates that jointly inferring the alignment
and the presence or absence of positive selection elimi-
nates the problem of high FPR for detecting diversify-
ing positive selection from estimated alignments. This is
partly due to increased accuracy in alignment estimation
under the BST/RS07 model. We find that alignments
sampled from the posterior distribution have a pairwise
alignment error that is about half that obtained by PRANK,
which is one of the best aligners to use when detecting
positive selection (Fletcher and Yang, 2010). Posterior
sampled alignment lengths were also more accurate than
alignment lengths estimated using MUSCLE, MAFFT, FSA,
and PRANK. Use of alignments sampled from the poste-
rior under the BST/RS07 model successfully eliminated
inflated FPRs, as other alignment estimates could not.
However, the ability to integrate over alignment uncer-
tainty provided a small but measurable increase in ac-
curacy for detecting positive selection, and gave PPs of
positive selection that were more similar to PPs given the
true alignment. PRANK alignments, while not as accurate
as posterior sampled alignments, were substantially more
accurate than MUSCLE and MAFFT alignments, and lead to
more accurate inferences of positive selection. FSA align-
ments were nearly as accurate as PRANK alignments, but
yielded slightly worse false positive rates in estimating

positive selection. Despite their similar performance in
detecting positive selection, FSA and PRANK alignments
have different characteristics, since FSA alignments tend
to be shorter than the true alignment, while PRANK align-
ments tend to be longer.

Alignment uncertainty

Our approach to integrating out alignment uncertainty
takes into account many sources of alignment uncertainty
that may be divided into two categories: parameter un-
certainty and near-optimal alignments. First, uncertainty
in evolutionary process parameters can cause alignment
uncertainty when plausible changes to these parameters
lead to different alignment estimates. Evolutionary pro-
cess parameters include branch lengths, gap parameters
such as the insertion and deletion rate, substitution pa-
rameters such as transition and transversion rates, and
the evolutionary tree. Second, even when the evolu-
tionary process parameters are fully known, there may
be thousands of alignments that achieve an optimal, or
nearly optimal probability. It is not possible to choose a
single alignment from this cloud of possibilities without
discarding many plausible alternatives. In order to fully
account for alignment uncertainty, a procedure must ac-
count for both near-optimal alignments and the effect of
uncertainty parameters on the alignment.

The ability to account for both parameter uncer-
tainty and near-optimal alignments is a natural feature of
Bayesian inference, which handles uncertainty from both
latent variables (such as the alignment) and from param-
eters (such as indel rates). This differs from a number of
current alignment-censoring methods which usually con-
sider only one source of alignment uncertainty. For ex-
ample, GUIDANCE (Penn et al., 2010a,b) considers uncer-
tainty in the phylogeny, but does not explicitly consider
uncertainty due to near-optimal alignments, or due to un-
certainty in other parameters such as gap penalties. HoT

(Landan and Graur, 2008) considers uncertainty due to
near-optimal or co-optimal alignments, but does not con-
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Fig. 3: ROC curves for inferring positive selection using
different methods of alignment. Vertical dotted
line indicates 5% FPR. Diagonal dotted line de-
scribes the performance of a random guess at dif-
ferent levels of specificity. Each curve represents
Bayesian estimation based on alignments esti-
mated using MUSCLE, MAFFT, FSA, PRANK, a sam-
pled alignment (Joint A), or joint estimation av-
eraging over alignments (Joint As) , as indicated.

sider uncertainty resulting from uncertainty in parame-
ters such as the phylogeny or gap penalties.

In this paper we have simulated sequences on a fixed
tree, and assumed that the tree topology was known. As
a result, there is no uncertainty about the evolutionary
tree topology, and thus no alignment uncertainty that
could result from tree topology uncertainty. This as-
sumption is probably adequate in some scenarios such as
the Drosophila 12 genomes project (Markova-Raina and
Petrov, 2011). However, in other cases it is inadequate,
either because the topology is the primary focus of esti-
mation, or because the unknown topology is a nuisance
parameter. In such a case, it is possible that GUIDANCE

could perform better because it explores a source of un-
certainty that is not considered here. To incorporate un-
certainty resulting from the unknown tree, we could sim-
ply enable the topology-sampling MCMC moves already
present in BAli-Phy (Redelings and Suchard, 2005, 2007).
However, the branch-site model prevents this, since it re-
quires the researcher to label the foreground branches a

priori. These branches must then be known to be part of
the true tree a priori, and thus the topology must be con-
strained before the estimation is begun. A model such as
that proposed by Pond et al. (2011) would solve this prob-
lem by allowing the set of branches experiencing positive
selecting to be co-estimated along with the alignment.
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Fig. 4: ROC curves for Bayesian inference and for the
branch-site LRT on the FY, BS1, and BS2 simu-
lated data sets when the true alignment is known.

Alternatively, researchers could simply switch to a model
that has site-specific but not branch-specific effects, like
the M2a model, which is already available in BAli-Phy.

Mismatches between models and reality

The currently study examines the effect of alignment error
on inferring positive selection by focusing on a single set
of simulation conditions (FY). Under these conditions,
inferring positive selection based on a single sample from
the posterior distribution was almost as accurate as the
more rigorous method of performing an average over the
sampled alignments. However, many biological sequences
do not match these simulation conditions. For example,
envelope gene sequences from HIV contain regions with
a much higher insertion/deletion rate (Privman et al.,
2012). Since we do not examine such conditions in the

Tab. 5: Performance of LRT and Bayesian tests on differ-
ent simulated data sets

FY BS1 BS2
FPR 1% 2% 4%

p < 0.05 (LRT) TPR 13% 3% 53%
FDR1:1 8% 36% 6%
FPR <1% <1% 9%

BF>3:1 TPR 7% 3% 84%
FDR1:1 3% 31% 10%
FPR <1% <1% <1%

BF>20:1 TPR <1% <1% 43%
FDR1:1 ? ? <1%
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paper, it remains an open question how well our method
would perform on such data sets.

This simulation study also does not address a num-
ber of ways in which real data could violate assumptions
made in the RS07 insertion/deletion model used here. For
example, indel lengths in nature probably do not follow
a geometric length distribution (Cartwright, 2006), and
they can sometimes occur within codons instead of be-
tween them (Redelings and Suchard, 2007). The rates of
insertions and deletions may frequently depend on which
letters that are inserted or deleted. For example, tandem-
repeat indels have a higher rate than other indels (Golen-
berg et al., 1993). More importantly, different regions of a
DNA sequence may have substantially different insertion-
deletion rates. By forcing a single sequence-wide indel
rate, the insertion/deletion model in this paper will of
necessity underestimate indel rates in indel hot-spots and
overestimate indel rates in cold-spots. In such cases, we
expect that the power and accuracy of alignment integra-
tion will lag behind knowledge of the true alignment more
substantially than it does in this paper. Simulation stud-
ies such as Privman et al. (2012) that include variation
of rates over different regions may be able to reveal how
much power is lost.

Bayesian formulation of the branch-site test

Here we have focused on inferring positive selection for a
single gene using Bayes factors. We assumed that it was
equally likely for a gene to be with and without positive
selection. An alternative approach would be to infer the
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Fig. 6: Distribution of true and estimated alignment
lengths for MUSCLE, MAFFT, FSA, PRANK, and sam-
ples from the BS/RS07 alignment posterior.

prior probability π1 that a gene contains positive selection
by analyzing many genes simultaneously. For example, if
there were G different genes and gene g has model Hg,
we could use the following hierarchical prior:

π1 ∼ Uniform(0, 1)

Hg ∼ Bernoulli(π1) for g = 1 . . . G

Such an approach would not be computationally pro-
hibitive, since it is possible to do inference by computing
the Bayes factor for each gene separately, and then com-
bining the Bayes factors. For data sets containing many
genes, we recommend such an approach, since it would
naturally require stronger evidence to infer positive se-
lection when the fraction of genes experiencing positive
selection is small. For data sets containing a large num-
ber of genes, it would also be possible to pool information
about ω+ and p+ between genes using hierarchical priors
to obtain more precise estimates.

Comparison with the standard branch-site
LRT

Bayesian model selection does not yield p-values, and does
not require a formal decision rule to classify support for
a model as significant or not significant. However, the
use of formal decision rules allows us to refer to the FPR
and TPR of Bayesian tests, and allows comparison with
the branch-site LRT under the p < 0.05 decision rule.
In this paper, we examined the FPR and TPR of the
Bayesian version of the branch-site test using the criteria
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BF>20:1 and BF>3:1. Note that unlike classical signifi-
cance testing, these criteria allow the possibility that the
researcher will accept H0, accept H1, or neither. For ex-
ample if BF10<1:20 then H0 will be accepted under either
decision rule, which cannot occur under the LRT.

The Bayesian and branch-site LRTs have similar trade-
offs between FPR and TPR as illustrated by their ROC
curves,. However, the Bayesian criteria of BF>3:1 and
BF>20:1 do not select the same points on these curves as
the LRT criterion of p < 0.05. We explain this by noting
that the p < 0.05 criterion is designed to limit the FPR,
and low FPR is not the same as strong evidence in favor
of positive selection. In fact, the significance threshold
of p < 0.05 frequently corresponds to evidence thresholds
between 3:1 and 5:1 in favor of H1, and to posterior prob-
abilities of H0 between 0.16 and 0.25 (Sellke et al., 2001).
Such high probabilities that H0 is true even when it has
been rejected have been invoked to explain the frequent
failure of replication for scientific results when H0 is re-
jected with p-values very close to 0.05 (Johnson, 2013).
Focusing on the FDR instead of the FPR may lead to
more reliable conclusions. Further, focus on the FDR
may allow easier comparison of Bayesian and frequen-
tist tests, since posterior probabilities are actually similar
to the false discovery rate (FDR) instead of to p-values
(Storey, 2003).

We recommend that researchers use the more stringent
BF>20:1 criterion over the relatively weak BF>3:1 cri-
terion. We imagine that researchers could be hesitant
to use the BF>20:1 criterion because it may yield fewer
significant tests than the BF>3:1 and p < 0.05 criteria.
However, our results indicate that although the BF>20:1
criterion detects few genes containing positive selection
where the evidence for positive selection is weak, it de-
tects a comparable number of genes to the branch-site
LRT where the evidence for positive selection is stronger,
as on the BS2 data set. Use of the BF>3:1 and p < 0.05
criteria, on the other hand, may lead to large FDRs when
the evidence for positive selection is weak. For example,
on the BS1 data set, the branch-site LRT and the BF>3:1
criteria both experience a FDR1:1 of greater than 30%
despite having low FPRs. In contrast, the BF>20:1 cri-
terion detects no genes as containing positive selection,
presumably because the evidence for positive selection is
too weak.

Wider implications

While the current study focuses on the branch-site model
(Zhang et al., 2005), all methods that estimate positive
selection from an excess of non-synonymous substitutions
would seem to be vulnerable to alignment errors. Incor-
porating tests such as that of Pond et al. (2011) into the
joint estimation framework would be a natural next step.
The framework presented in this paper is not limited to
positive selection, but can be applied to any single-site
property with an evolutionary model that specifies substi-

tution rates between letters or codons. Future discoveries
may enable multi-site properties such as conserved DNA
binding motifs to be incorporated into the statistical and
evolutionary framework presented here.

More broadly, incorrectly aligning non-homologous let-
ters or codons may create spurious substitutions, leading
to an elevated FPR and TPR for any site properties char-
acterized by excess substitutions. On the other hand, site
properties characterized by conservation will have a de-
creased FPR and TPR in the presence of alignment error
if conserved columns are not correctly assembled. In such
cases, we predict that integrating out the alignment will
improve power by increasing a low TPR instead of by
decreasing a high FPR. Censoring of misaligned regions
seems unlikely to improve the ability to detect conserved
sites, such as DNA binding motifs, when the conserved
sites are themselves misaligned.

In view of the high accuracy and practical run time
for alignment integration, we recommend that researchers
who seek to infer site properties from sequence data
should consider not only procedures for annotating and
censoring alignments, but also methods for integrating
over them.

Methods

Model

Our model of the evolutionary process can be described
in terms of the probability expression for the observed
data and other unobserved components of the evolution-
ary process. The observed data Y consists of n observed
sequences Yi for i = 1 . . . n. The phylogeny relating these
sequences has unrooted topology τ and branch lengths T .
Each observed sequence Yi corresponds to a leaf of the
topology τ . The alignment A expresses the positional
homology of residues in these n observed leaf sequences,
and also the n−2 unobserved sequences at internal nodes.
Evolutionary parameters Θ and Λ describe the process of
accumulation of substitution and insertion/deletion mu-
tations respectively. Given this notation, we can describe
the joint probability of all these random variables as:

Pr(Y,A, τ,T,Θ,Λ) = Pr(Y|A, τ,T,Θ)×

Pr(A|τ,T,Λ)× Pr(τ,T)× Pr(Θ)× Pr(Λ).

Here, the term Pr(Y|A, τ,T,Θ) is the standard substi-
tution likelihood, and is given by the substitution model.
The term Pr(A|τ,T,Λ) is given by the insertion-deletion
model. The remaining terms are prior distributions
on the phylogeny and evolutionary process parameters.
In this model, the substitution process and insertion-
deletion process operate completely independently from
each other. This means that the rates of insertion and
deletions are not influenced by what letters are inserted
or deleted, and that the rates of substitution are not af-
fected by the presence of insertions or deletions.
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Substitution model We make use of the branch-site
model introduced by Zhang et al. (2005). As described
above, model parameters include the frequencies p0, p1,
p2a, and p2b of each site class, the frequencies of the 61
sense codons, the transition/transversion rate ratio κ, and
the non-synonymous/synonymous rate ratios. We choose
to parameterize the site class frequencies in terms of the
relative frequencies f1 = p0

p0+p1

and f2 = p1

p0+p1

of each
conserved or neutral selected site class, along with the
fraction f+ = p2a + p2b of positively selected sites. Thus
p2a = f+ · f1 and p2b = f+ · f2. Corresponding to these
frequency parameters, we write ω1, ω2 = 1, and ω+ for
the ω0, ω1 = 1 and ω2 of Zhang et al. (2005). We make
use of the F3x4 parameterization of codon frequencies.
This parameterization determines the codon frequencies
from independent nucleotide frequencies π(1), π(2), and
π(3) in each codon position, renormalized to sum to 1.0
after the removal of the 3 stop codons.

We also introduce a binary indicator variable H to se-
lect between the null model with no positive selection,
and the alternative model with positive selection. When
H = 0, we ignore the value of ω+ parameter and com-
pute transition matrices as if ω+ = 1. This corresponds
to a lack of positive selection, although it still imposes a
rate change from conservation to neutrality on foreground
branches in site class #3 (see table 2). When H = 1, the
value of the ω+ parameter is used when computing tran-
sition matrices. Since this value is always greater than
1.0, this ensures a rate change to positive selection on the
foreground branch in site classes #3 and #4.

The substitution model parameters are Θ =
(f1, f2, f+, ω1, ω+, π

(1), π(2), π(3), κ,H), for a total num-
ber of 14 degrees of freedom.

Insertion-deletion model We make use of the Redelings
and Suchard (2007, RS07) model of insertion and dele-
tion. This model constructs a distribution on multiple
alignments from a collection of pairwise alignment distri-
butions placed along the branches of a phylogenetic tree.
The pairwise alignment distributions are described by a
pair-Hidden Markov Model (pair-HMM). These pairwise
alignment distributions are symmetrical in the ancestor
and descendant sequences. This means that the indel
model is reversible and that insertions and deletions are
equally probable. The RS07 model allows multi-residue
indels and thus has an affine gap penalty. Insertion and
deletion lengths follow a common geometric length dis-
tribution with extension probability ǫ, so that the mean
indel length is 1/(1− ǫ). Indels in the RS07 model occur
at a rate λ, scaled relative to the substitution rate. Thus
the insertion-deletion parameters Λ = (λ, ǫ) contribute 2
degrees of freedom.

Simulations

We simulated datasets under models without positive se-
lection and datasets under models containing positive se-

lection on a single branch. For easy comparison with
previous work, we used two simulation scenarios from
Fletcher and Yang (2010). We refer to these scenarios
as FY+ and FY- to indicate the presence or absence of
positive selection. The FY data sets are not simulated un-
der the branch-site model. Instead, they allow different
columns to take on a variety of different neutral or con-
servative ω values on background branches. We there-
fore introduce data sets BS1+, BS1-, BS2+, and BS2-
simulated under the branch-site model. We simulated
1000 data sets for each of the 6 simulation regimes. All
data sets were simulated using the software INDELible

Fletcher and Yang (2009).
All simulation regimes make use of a common rooted

tree. The two branches connecting to the root are fore-
ground branches, and the remaining branches are back-
ground branches. Simulations on the tree began with

0.1

Fig. 7: Evolutionary tree used in simulation. The fore-
ground branch is dashed and colored gray. It is
referred to as branch α in Zhang et al. (2005).
Branch lengths are given in terms of synonymous
changes per synonymous site.

a sequence of 300 codons at the root. The transi-
tion/transversion rate ratio κ was set to 4 on all branches.
Codon frequencies were assigned based on the F3x4
model; nucleotide frequencies for the 1st, 2nd, and 3rd
position were set to the same values used by Fletcher and
Yang (2010). The insertion rate and the deletion rate
were both set to 0.05 times the substitution rate. The
length of both insertions and deletions followed a geo-
metric distribution with success probability 0.35, so that
the average indel length was 1.53 codons.

In the FY data sets, each codon position had proba-
bility 1/10 of being assigned to each of 10 site classes.
Each site class was assigned specific values of ω on each
branch according to one of the two schemes X or U taken
from Fletcher and Yang (2010). These selection schemes
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are described in table 3. In the FY- model, all branches
follow scheme X, whereas in the FY+ model the fore-
ground branch is changed to follow scheme U. In scheme
X, each ω value 0.0, 0.2, 0.5, 0.8, or 1.0 is assigned to
2 site classes, and so these ω values each occur in 20%
of alignment columns. The U scheme differs from the X
scheme only in that one of the two ω = 0.5 site classes is
changed to have ω = 2.0, and one of the two ω = 0.8 site
classes is changed to have ω = 4.0. Thus, in the simula-
tion scheme for positive selection, 20% of sites switch to
ω > 1 on the foreground branch. However, columns with
the highest conservation on background branches never
switch to positive selection in under the FY+ simulation
conditions.

The BS data sets use the same tree, insertion-deletion
parameters, and codon frequencies as the FY data sets.
For all BS data sets, f+ = 0.2, so that 20% of sites switch
to positive selection on the foreground branch. For the
BS1+ data set, we set f1 = 0.5, ω1 = 0.5, f2 = 0.5,
ω2 = 1.0, ω+ = 3.0. For the BS2+ data set, we set
f1 = 0.6, ω1 = 0.1, f2 = 0.4, ω2 = 1.0, ω+ = 4.0. The
BS1- and BS2- models are derived from the BS1+ and
BS2+ models by setting ω+ = 1.0. Thus, in the BS1-
and BS2- models, rate switching does occur on the fore-
ground branch. However, instead of switching to positive
selection, the BS1- and BS2- allow only switching to neu-
trality.

Alignment methods

We performed the Bayesian version of the branch-site test
on each simulated data set using a variety of different
alignment methods. Several methods relied on fixed, ex-
ternally supplied alignments. These include the known
true alignment, as well as alignments constructed by the
software packages MUSCLE, MAFFT, FSA, and PRANK. Ad-
ditionally, we refer to the results of the analysis in which
the presence of positive selection and the alignment were
jointly estimated as ’Joint As’. An additional method
involved selecting the last sampled alignment from the
’Joint As’ analysis and using it as input to a fixed-
alignment analysis. We refer to this fixed-alignment anal-
ysis as ’Joint A’, since only a single alignment was used.

For the software packages MUSCLE, MAFFT, and FSA

data sets were aligned on the amino acid level in order
to obtain alignments that do not split codons (Fletcher
and Yang, 2010). However, the PRANK software also con-
tains the ability to align codons directly, and we therefore
use codon-based alignments instead of amino-acid-based
alignments from PRANK unless otherwise specified.

Priors

The Bayesian approach requires the incorporation of prior
distributions for each parameter. As mentioned above,
the priors on ω+ and f+ are probably the most influen-
tial. We therefore construct priors on ω+ and f+ that are

sufficiently vague that they can be reused in future anal-
yses of other data sets with different parameter values.

We place a Gamma(4, 0.25) prior on logω+ because
this prior has three important properties. First, the dis-
tribution is vague and has a heavy right tail. This means
that a broad range of ω+ values is plausible a priori. The
heavy right tail means that the prior belief against large
ω+ values is weak enough that large ω+ values can be in-
ferred if the data support them. Second, the prior places
about 50% of its mass between biologically plausible val-
ues between ω+ = 2 and ω+ = 4. Third, the prior density
decreases to 0 as it approaches 1.0. This means the test
will require more data to infer positive selection when ω+

is only slightly larger than 1. Finally, note that any prior
on ω+ must have Pr(ω+ > 1) = 1.

We place a a Beta(1, 10) distribution on p+. We sought
a prior that places most of its mass on values < 0.2. This
is because if f+ is estimated as being much larger than
the true value, then the category of positively selected
sites will effectively include neutral or conserved sites.
This will then push the value of ω+ down, and power
will be lost. We also sought a prior that represents rel-
atively weak evidence against large f+ values, so that if
the data set actually contains a high frequency of posi-
tively selected sites, estimation of a high value of f+ will
be possible.

We place a uniform prior on H, so that Pr(H = 0) and
Pr(H = 1) are both 0.5. Since the likelihood is calculated
as if ω+ = 1 when H = 0, this leads to a prior on ω+ that
consists of 50% of the mass being placed on ω+ = 1, and
50% of the mass being placed on ω+ > 1 (fig. 8) .

0 2 4 6 8 10

Fig. 8: Prior distribution on ω+. The prior places 50%
of its mass on 1. For the other 50% of the mass,
the prior mean is about 3. The prior places low
support on values > 1.0 that are very close to 1.0.
The prior has a heavy right tail, indicating that it
does not strongly conflict with values of ω+ that
are larger than the mean.

We place a Dirichlet(1, 1) distribution on (f1, f2). We
place a Laplace(−4, 1/

√
2) prior on the log of λ the rate of

insertions and deletions. We place an Exponential prior
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with mean 10 on the mean indel length minus 1. Since
the topology is fixed, we do not need to place a prior on
topologies. However, branch lengths are random and so
we place a hierarchical prior on branch lengths, with each
branch length Tb ∼ Γ(1/2, 2µ) and the hyper-parameter
µ ∼ Γ(1/2, 2). Thus, each branch length has prior mean
µ, and µ has prior mean 1.0. This hierarchical prior avoids
sensitivity to the prior mean on branch lengths.

Transition kernels

For continuous variables we made use of both Metropolis-
Hastings transition kernels and auto-tuned slice-sampling
transition kernels. For the binary variable H we used a
simple Metropolis transition kernel to propose the alter-
native state. For the alignment we made use of 4 main
transition kernels. These include the HB1 and HB2 tran-
sition kernels (Holmes and Bruno, 2001), along with two
transition kernels described by Redelings and Suchard
(2005). Each of these transition kernels re-samples part
of the alignment but keeps the remainder unchanged.

MCMC Convergence

Posterior samples were obtained by using the soft-
ware BAli-Phy to perform MCMC. When estimating the
alignment, the initial alignment was obtained by remov-
ing all gaps from the FASTA file containing the true align-
ment, thus resulting in an alignment with no internal gaps
and external gaps only on the right edge. We ran 2 inde-
pendent chains for each analysis and pooled the results.
Each chain was run for 2000 iterations, discarding the
first 500 iterations as burn-in. Samples are recorded once
every iteration. Note that BAli-Phy performs a large
number of operations in each iteration, so that BAli-Phy
iterations are not necessarily comparable to iterations of
other MCMC software. For example, every parameter
and branch length was re-sampled in each iteration, and
the pairwise alignment along each branch was re-sampled
5 times each iteration. Each chain requires about 15 hours
for 2000 iterations on an Intel Xeon 5550 processor. This
can be compared to a total time of about 10 minutes for
PRANK + GUIDANCE + CodeML.

Convergence and mixing were assessed by examining
the potential scale reduction factors (PSRF) based on
the length of 80% credible intervals (Brooks and Gelman,
1998). We examined the PSRF for all continuous param-
eters. In analyses where the alignment was estimated, we
also examined the PSRF for the total number of indels,
the total lengths of indels, the total number of alignments
columns, and the nucleotide-wise parsimony score (Gaya
et al., 2010). The median of PSRF across MCMC runs
with a fixed alignment was 1.02. For MCMC runs where
the alignment was being estimated, the median PSRF was
1.04.

We also measured the correlation between posterior
probabilities of positive selection estimated from different

MCMC runs. This correlation was 0.993 when the align-
ment was fixed to the true alignment. When integrating
out the alignment and sampling the alignment only once
per iteration, the correlation was 0.991. When increasing
the alignment sampling by a factor of 5, as in the final
results, the correlation increased to 0.992.

Alignment distances

For a pair of sequences i and j, the distance between two
pairwise alignments α1 and α2 is computed as follows.
We refer to letters of i and j by their position in the
sequence, not by their value. Thus, for example, in the
sequence ATA, the two As are considered different let-
ters because they occur at different positions. Then let
d1(α1, α2) be the number of letters in i that are aligned
differently between α1 and α2. This includes letters in i
that are aligned to a gap in one alignment but not the
other, as well as letters in i that are aligned to two dif-
ferent letters of j in the two alignments. Likewise, let
d2(α1, α2) be the number of letters of j that are aligned
differently between the two alignments. Furthermore, let
|i| and |j| be the number of letters in the sequences i and
j respectively. Then our distance d(α1, α2) is defined to
be:

d(α1, α2) =
d1(α1, α2) + d2(α1, α2)

|i|+ |j| .

This distance is symmetric in i and j, as well as symmet-
ric in α1 and α2. Its values must be in the interval [0, 1].
Unlike some other distances for pairwise alignments, this
distance function rewards correct gaps and penalizes in-
correct matches, in addition to rewarding correct matches
(Bradley et al., 2009).

Software

All Bayesian analyses in this article were performed using
the software BAli-Phy. Source code is freely available at
https://github.com/bredelings/BAli-Phy.

Acknowledgements

This work was supported by NSF Grant #EF-0905606 to
the National Evolutionary Synthesis Center (NESCent).
We thank Bill Fletcher for providing the INDELible con-
trol files used by Fletcher and Yang (2010). Many thanks
to Ziheng Yang for his invaluable assistance in describ-
ing implementation details of CodeML. I also thank the
three anonymous reviewers for their help in improving
the manuscript.

References

Allison L, Wallace CS. 1994. The posterior probability
distribution of alignments and its application to pa-
rameter estimation of evolutionary trees and the opti-



15

misation of multiple alignments. Journal of Molecular

Evolution. 39:418–430.

Blackburne BP, Whelan S. 2013. Class of multiple se-
quence alignment algorithm affects genomic analysis.
Mol Biol Evol. 30:642–653.

Blackwell D. 1947. Conditional expectation and unbi-
ased sequential estimation. The Annals of Mathemati-

cal Statistics. 18:1–164.

Bradley RK, Roberts A, Smoot M, Juvekar S, Do J,
Dewey C, Holmes I, Pachter L. 2009. Fast statistical
alignment. PLoS computational biology. 5:e1000392.

Brooks S, Gelman A. 1998. General methods for moni-
toring convergence of iterative simulations. Journal of

computational and graphical statistics. 7:434–455.

Cartwright RA. 2006. Logarithmic gap costs decrease
alignment accuracy. BMC Bioinformatics. 7:527.

Castresana J. 2000. Selection of conserved blocks from
multiple alignments for their use in phylogenetic anal-
ysis. J. Mol. Biol. Evol. 17:540–552.

Edgar RC. 2004. MUSCLE: multiple sequence alignment
with high accuracy and high throughput. Nucleic Acids

Research. 32:1792–1797.

Fletcher W, Yang Z. 2009. Indelible: a flexible simu-
lator of biological sequence evolution. Mol Biol Evol.
26:1879–1888.

Fletcher W, Yang Z. 2010. The effect of insertions, dele-
tions, and alignment errors on the branch-site test of
positive selection. Mol Biol Evol. 27:2257–2267.

Gaya E, Redelings BD, Navarro-Rosiné P, Llimona X,
Cáeres MD, Lutzoni FM. 2010. Align, or not to align?
Resolving species complexes within the Caloplaca saxi-

cola group as a case study. Mycologia. .

Goldman N, Yang Z. 1994. A codon-based model of
nucleotide substitution for protein-coding DNA se-
quences. Molecular Biology and Evolution. 11:725–736.

Golenberg EM, Clegg MT, Durbin ML, Doebly D, Ma
DP. 1993. Evolution of a noncoding region of the
chloroplast genome. Molecular Phylogenetics and Evo-

lution. 2:52–64.

Holmes I, Bruno WJ. 2001. Evolutionary HMMs: a
Bayesian approach to multiple alignment. Bioinfor-

matics. 17:802–820.

Jeffreys H. 1998. The theory of probability. Oxford Uni-
versity Press.

Johnson VE. 2013. Revised standards for statistical ev-
idence. Proceedings of the National Academy of Sci-

ences. 110:19313–19317.

Jordan G, Goldman N. 2012. The effects of alignment
error and alignment filtering on the sitewise detection
of positive selection. Mol Biol Evol. 29:1125–1139.

Kass RE, Raftery AE. 1995. Bayes factors. Journal of

the american statistical association. 90:773–795.

Katoh K, Misawa K, Kuma Ki, Miyata T. 2002. Mafft:
a novel method for rapid multiple sequence alignment
based on fast fourier transform. Nucleic Acids Res.
30:3059–3066.

Katoh K, Standley DM. 2013. Mafft multiple sequence
alignment software version 7: improvements in perfor-
mance and usability. Mol Biol Evol. 30:772–780.

Landan G, Graur D. 2008. Local reliability measures from
sets of co-optimal multiple sequence alignments. Pac

Symp Biocomput. pp. 15–24.

Löytynoja A, Goldman N. 2005. An algorithm for pro-
gressive multiple alignment of sequences with inser-
tions. Proc Natl Acad Sci U S A. 102:10557–10562.

Löytynoja A, Milinkovitch MC. 2001. Soap, cleaning mul-
tiple alignments from unstable blocks. Bioinformatics.
17:573–574.

Markova-Raina P, Petrov D. 2011. High sensitivity to
aligner and high rate of false positives in the estimates
of positive selection in the 12 drosophila genomes.
Genome Res. 21:863–874.

Misof B, Misof K. 2009. A monte carlo approach success-
fully identifies randomness in multiple sequence align-
ments: a more objective means of data exclusion. Syst

Biol. 58:21–34.

Muse SV, Gaut BS. 1994. A likelihood approach for
comparing synonymous and nonsynonymous nucleotide
substitution rates, with application to the chloroplast
genome. Molecular Biology and Evolution. 11:715–724.

Nielsen R, Yang Z. 1998. Likelihood models for detecting
positively selected amino acid sites and applications to
the hiv-1 envelope gene. Genetics. 148:929–936.

Penn O, Privman E, Ashkenazy H, Landan G, Graur D,
Pupko T. 2010a. Guidance: a web server for assess-
ing alignment confidence scores. Nucleic Acids Res.
38:W23–W28.

Penn O, Privman E, Landan G, Graur D, Pupko T.
2010b. An alignment confidence score capturing robust-
ness to guide tree uncertainty. Mol Biol Evol. 27:1759–
1767.

Pond SLK, Murrell B, Fourment M, Frost SDW, Delport
W, Scheffler K. 2011. A random effects branch-site
model for detecting episodic diversifying selection. Mol

Biol Evol. 28:3033–3043.



16

Privman E, Penn O, Pupko T. 2012. Improving the per-
formance of positive selection inference by filtering un-
reliable alignment regions. Mol Biol Evol. 29:1–5.

Redelings BD, Suchard MA. 2005. Joint Bayesian estima-
tion of alignment and phylogeny. Systematic Biology.
54:401–418.

Redelings BD, Suchard MA. 2007. Incorporating indel in-
formation into phylogeny estimation for rapidly emerg-
ing pathogens. BMC Evo. Bio. 7. 40.

Schneider A, Souvorov A, Sabath N, Landan G, Gonnet
GH, Graur D. 2009. Estimates of positive darwinian se-
lection are inflated by errors in sequencing, annotation,
and alignment. Genome Biol Evol. 1:114–118.

Sellke T, Bayarri M, Berger JO. 2001. Calibration of ρ
values for testing precise null hypotheses. The Ameri-

can Statistician. 55:62–71.

Siepel A, Bejerano G, Pedersen JS, et al. (11 co-authors).
2005. Evolutionarily conserved elements in vertebrate,
insect, worm, and yeast genomes. Genome research.
15:1034–1050.

Sinha S, Blanchette M, Tompa M. 2004. Phyme: a prob-
abilistic algorithm for finding motifs in sets of ortholo-
gous sequences. BMC bioinformatics. 5:170.

Storey JD. 2003. The positive false discovery rate: A
bayesian interpretation and the q-value. Annals of

statistics. pp. 2013–2035.

Suchard MA, Weiss RE, Sinsheimer JS. 2001. Bayesian
selection of continuous-time markov chain evolution-
ary models. Molecular Biology and Evolution. 18:1001–
1013.

Thorne JL, Kishino H. 1992. Freeing phylogenies from ar-
tifacts of alignment. Molecular Biology and Evolution.
9:1148–1162.

Villanueva-Cañas JL, Laurie S, Albà MM. 2013. Improv-
ing genome-wide scans of positive selection by using
protein isoforms of similar length. Genome Biol Evol.
5:457–467.

Wong KM, Suchard MA, Huelsenbeck JP. 2008. Align-
ment uncertainty and genomic analysis. Science.
319:473–476.

Wong WSW, Yang Z, Goldman N, Nielsen R. 2004. Ac-
curacy and power of statistical methods for detect-
ing adaptive evolution in protein coding sequences
and for identifying positively selected sites. Genetics.
168:1041–1051.

Zhang J. 2004. Frequent false detection of positive selec-
tion by the likelihood method with branch-site models.
Mol Biol Evol. 21:1332–1339.

Zhang J, Nielsen R, Yang Z. 2005. Evaluation of an im-
proved branch-site likelihood method for detecting pos-
itive selection at the molecular level. Mol Biol Evol.
22:2472–2479.


